SentimentArcs: a large ensemble of dozens of sentiment analysis models to analyze emotion in text over time

Overview

SentimentArcs Logo

SentimentArcs - Emotion in Text

An end-to-end pipeline based on Jupyter notebooks to detect, extract, process and anlayze emotion over time in text.
Explore the docs »

Quick Video Overview · Cambridge University Press Elements Textbook by Katherine Elkins · Report a Bug or Request a Feature · More Research by Jon Chun and Katherine Elkins · References on Sentiment Analysis, AffectiveAI and Related Topics

Table of Contents

  1. Welcome
  2. Background
  3. Features
  4. Sentiment Analysis Models
  5. Notebooks and Dataflow
  6. Reference Corpora
  7. Installation
  8. Examples
  9. License
  10. Contact and Contribute
SentimentArcs Ensemble of Machines Like Me by Ian McEwan Fig 1: SentimentArcs Ensembles over three dozen Sentiment Analysis Models from simple XAI Lexicons to State-of-the-Art Transformers (including Models specialized for Financial and Social Texts)

SentimentArcs Peak Detection for Machines Like Me by Ian McEwan Fig 2: Efficient Exploratory Data Analysis (EDA) by Domain Expert to customize Models, Hyperparameters and Time Series Processing

SentimentArcs Crux Extraction for Machines Like Me by Ian McEwan Fig 3: Automatic Peak/Valley detection and Text Extraction around Crux Points

Welcome!

SentimentArcs is a novel methodology and software framework for analyzing emotion in long texts or sequenced collections of shorter texts using Diachronic Sentiment Analysis. It segments any corpus of long text into semantic units (e.g. sentences, tweets, financial posts), applying an ensemble of over three dozen NLP sentiment analysis models from simple lexical models to state-of-the-art Transformer models. The resulting sentiment time series can be smoothed so key features like peaks and valleys can be detected and the surrounding text around these key crux points can be extracted for analysis by domain experts.

For literary experts features like peaks and valleys often correspond to key crux points in a narrative. For a financial analyst, these could represent regime changes or arbitrage opportunities. For a social media analysts, these swings in could represent shifting public opinion on key topics, public figures or even terrorist cell activities. SentimentArcs is built around a large ensemble of sentiment analysis models that surface interesting emotional arcs that domain experts can use to efficiently detect subtle and complex ground truths hidden within any sequenced body of text.

(back to top)

Background

SentimentArcs is the result of many years of our experiences researching a wide variety of AI and machine learning techniques to assist human experts in the extremely challenging task of analyzing and generating natural language texts. This includes a focus on AffectiveAI approaches to analyzing diverse textual corpora including literature, social media, news, scripts, lyrics, speeches, poems, financial reports, legal documents, etc. Virtually all sequential long-form texts have detectable and measurable sentiment changes over time that reveals cohesive narrative elements. SentimentArcs helps domain experts efficiently arbitrate between competing machine learning and AI NLP models to quickly and efficiently identify, analyze and discover latent narratives elements and emotional arcs in text.

Cambridge Elements: Digital Literary Studies

SentimentArcs is the novel software framework underlying Katherine Elkins upcoming Cambridge Elements book . This text speaks to the domain expert in Narrative Studies, Comparative Literature and English who want to learn how to use NLP sentiment analysis in general, and SentimentArcs in particular, for analyzing literature. The approach in this Cambridge Elements text is entirely generalizable to other fields. A more technical introduction to the core framework of SentimentArcs can be found in the October 2021 ArXiv paper by Jon Chun. The Abstract of this paper outlines the technical focus and practical goals of SentimentArcs:

SOTA Transformer and DNN short text sentiment classifiers report over 97% accuracy on narrow domains like IMDB movie reviews. Real-world performance is significantly lower because traditional models overfit benchmarks and generalize poorly to different or more open domain texts. This paper introduces SentimentArcs, a new self-supervised time series sentiment analysis methodology that addresses the two main limitations of traditional supervised sentiment analysis: limited labeled training datasets and poor generalization. A large ensemble of diverse models provides a synthetic ground truth for self-supervised learning. Novel metrics jointly optimize an exhaustive search across every possible corpus:model combination. The joint optimization over both the corpus and model solves the generalization problem. Simple visualizations exploit the temporal structure in narratives so domain experts can quickly spot trends, identify key features, and note anomalies over hundreds of arcs and millions of data points. To our knowledge, this is the first self-supervised method for time series sentiment analysis and the largest survey directly comparing real-world model performance on long-form narratives.

Arxiv.org SentimentArcs Paper

(back to top)

Features

  • The largest ensemble of open NLP sentiment analysis models that we know of (currently over 3 dozen)
  • Efficient and Flexible Human-in-the-Loop to supervise, customize, tune the entire end-to-end process of sentiment analysis
  • Flexible statistical, visualization and text customizations so Domain Experts can easily identify, extract and analyze key features and surrounding text from sentiment time series.
  • Access to domain-specific baselines (Novels, Finance and Social Media) based upon carefully curated corpora
  • Novel Time Series Synthesis and Data Augmentation for NLP Sentiment Analysis Time Series
  • Novel Peak Detection Algorithms customized for NLP Sentiment Analysis Time Series
  • Easy access via free Google Colab Jupyter notebooks with access to powerful GPU accelerators
  • Minimal setup, training and support costs

(back to top)

Sentiment Analysis Models

  • Text preprocessing (cleaning, advanced sentence segmentation, custom stopword sets, etc)
  • An ensemble of over 3 dozen Sentiment Analysis Models including a diverse representation of major families (including the most popular sentiment analysis libraries and models from both R and Python as well as some AutoML techniques):
  • Lexical
  • Heuristics
  • Linguistic
  • GOFAI Machine Learning
  • Deep Neural Networks & AutoML
  • State of the Art Transformer Models

(back to top)

Notebooks and Dataflow

Concretely, SentimentArcs consists of a series of software modules embodied as Jupyter notebooks and supporting libraries designed to work on Google's free Colab service. Notebooks are executed in sequence reflecting different steps in the pipeline from text cleaning to sentiment time series analysis. Despite some shortcomings, Google Colab offers the lowest technical barrier for the widest range of non-technical Domain Experts as well as powerful-GPU backed Jupyter notebooks required for the most powerful state-of-the-art models in our ensemble. SentimentArc models/notebooks include:

SentimentArcs is best viewed as an ordered pipeline of Google Colab Jupyter Notebooks that are run in sequence as follows:

  1. Notebook 0: Copy SentimentArcs Github repo to your Google GDrive (run once at setup or to reset)
  2. Notebook 1: Preprocessing Text
  3. Notebook 2: Sentiment Analysis Models: R Lexicon and Heuristic using SyuzhetR(4) and SentimentR(8)
  4. Notebook 3: Sentiment Analysis Models: Python Lexicon, Heuristic and ML
  5. Notebook 4: Sentiment Analysis Models: DNN and AutoML
  6. Notebook 5: Sentiment Analysis Models: Transformers(11)
  7. Notebook 6: Analysis, Visualizations, Smoothing and Crux Extraction

SentimentArcs Notebook DataFlow

Data flows through the project subdirectory structure in a corresponding manner:

  1. text_raw: minimally prepared textfiles for the corpus
  2. text_clean: text further cleaned by SentimentArcs
  3. sentiment_raw: raw sentiment values for all texts in the corpus
  4. sentiment_clean: processed sentiment time series
  5. graphs_cruxes: extracted key features/crux points with surrounding text

(back to top)

Reference Corpora

SentimentArcs can be viewed as an end-to-end pipeline to detect, extract, preprocess and analyze sentiment in any corpus of long-form texts. This includes both individual long-form texts as well as corpora compiled from individually time-sequenced smaller texts like compilations of specific authors, genres, or periods as well as tweets, financial reports, topical news articles, speeches, etc. Initially, SentimentArcs is focused on offering users both carefully curated reference corpora to provide a ground truth and a baseline reference for specific genres of text including novels, financial texts and social media. SentimentArcs also enables users to create new corpora of customized texts for specialized sentiment analysis tasks and analysis. Currently, SentimentArcs provides reference corpora for these types of texts (with more to be added in the future):

  • Novels
  • Financial Texts
  • Social Media

For example, the reference corpus for novels consists of 25 narratives selected to create a diverse set of well-recognized novels that can serve as a benchmark for sentiment analysis of other texts. The novel corpora span approximately 2300 years from Homer’s Odyssey to the 2019 Machines like Me by award-winning author, Ian McEwan. Early 20th century modernists are emphasized by authors like Marcel Proust and Virginia Woolf. In sum, the corpora include (1) the two most popular novels on Gutenberg.org (Project Gutenberg, 2021b), (2) eight of the fifteen most assigned novels at top US universities (EAB, 2021), and (3) three works that have sold over 20 million copies (Books, 2021). There are eight works by women, two by African-Americans and five works by two LGBTQ authors. Britain leads with 15 authors followed by 6 Americans and one each from France, Russia, North Africa and Ancient Greece.

(back to top)

Installation

SentimentArcs relies upon Google to provide easy-to-use, ubiquitous and free access to powerful GPU-backed Jupyter Notebooks. Here are the free resources you should sign-up to use SentimentArcs:

  • Google GMail Account (to have access to GDrive)
  • Activate Colab Jupyter Notebooks to your GDrive from the Google Workspace Market
  • Github account (if you which to report issues or comment)

Colab Jupyter Notebooks offer several significant advantages including easy access via an intuitive web browser, low/no support costs and a powerful GPU backend VM for free. However, it comes with some limitations to be aware of including required sequential execution, latencies and limited interface design.

To set up SentimentArcs, please follow the instructions below carefully as each step depends upon the previous steps.

  1. Login to Google, go to your GDrive and create a subfolder to hold your copy of the SentimentArc project (e.g. /MyDrive/sentimentarcs_notebooks/)
  2. Be sure you have connected the Colab Notebooks app from the Google Workplace Market.
  3. Navigate to your SentimentArcs project subdirectory and create/open a new Colab Notebook.
  4. On the new blank Colab Notebook, to the top left corner and select [File]->[Open Notebook]. When a pop-up window appears, select the [Github] from the right side of the top horizontal menu. Enter 'https://github.com/jon-chun/sentimentarcs_notebooks' on the top line after the prompt [Enter a GitHub URL or search by organization or user], click the search icon, and select 'sentiment_arcs_part1_text_preprocessing.ipynb' from the list below.
  5. Run the first code cell to 'Connect Google GDrive' and grant permission for this notebook to connect to your GDrive.
  6. Edit the input on the second code cell to point to the SentimentArcs project directory you defined in Step 1 and other information asked. Be sure to execute this code cell after entering this information.
  7. Executing the next cell should copy over the current SentimentArcs code from Github if it does not already exist in your GDrive.

(back to top)

Examples

At DHColab we use Sentiment Analysis to analyze and extract features from all kinds of texts including: novels, social media, news, filings financial filings, lyrics, speeches, research papers, lyrics, poems, etc. SentimentArcs is a formalization of many of the best practices we developed over the years. Each type of text (e.g. Novels, Social Media, News, Financial Texts, etc) shares common anlysis techniques as well as requires customized methodologies tailored to each genre. For example, for novels we are seeking to surface latent features of narrative like plot, financial texts often reveal shifts in investor sentiment, and peaks/valleys in social media sentiment can reflect shifts in public opinion on current events, political candidates or new products/services.

In addition to Dr. Elkins Cambridge Elements text referenced above, here are serveral examples from our DHColab that demonstrate the use of sentiment analysis to analyze various types of text.

Novels:

  1. Adapted Arcs: Sentiment Analysis and The Sorcerer's Stone by Erin Shaheen
  2. Doubles and Reflections: Sentiment Analysis and Vladimir Nabokov’s Pale Fire by Catherine Perloff

Financial Texts:

  1. Computational Approaches to Predicting Cryptocurrency Prices by Chris Pelletier

Social Media:

  1. Analyzing Covid-19 Through a Sentiment Analysis of Twitter Data by Cameron Catana

License

MIT License

Contact and Contribute

SentimentArcs arose from a multi-year collaboration between academia and industry and across disciplines including comparative literature, econometrics, social sciences, data analytics and ML/AI among others. The world is too interconnected and the solutions to interesting important challenging problems are too complex for any one domain expert.

As a result, we welcome collaboration and contributions that can help grow SentimentArcs into the premier NLP tool for sentiment analysis which includes experts from both technical and non-technical domains. Here are just a few ways you could contribute to SentimentArcs, the broader Digital Humanities, and NLP community:

  1. Use SentimentArcs to analyze existing reference corpora to identify strengths/limitations of various models, optimal hyperparameters, interpretations, etc
  2. Contribute new texts (e.g. novels, financial reports, social media compilations)
  3. Compile, expand upon the reference corpora for Finance, Social Media, or other text genres
  4. Suggest or contribute code to add new sentiment analysis models
  5. Help with documentation, training and interpretation
  6. Bug identification/fixes
  7. Suggestions or code for new features and improved performance

(back to top)

Owner
jon_chun
jon_chun
DELTA is a deep learning based natural language and speech processing platform.

DELTA - A DEep learning Language Technology plAtform What is DELTA? DELTA is a deep learning based end-to-end natural language and speech processing p

DELTA 1.5k Dec 26, 2022
Build Text Rerankers with Deep Language Models

Reranker is a lightweight, effective and efficient package for training and deploying deep languge model reranker in information retrieval (IR), question answering (QA) and many other natural languag

Luyu Gao 140 Dec 06, 2022
Paradigm Shift in NLP - "Paradigm Shift in Natural Language Processing".

Paradigm Shift in NLP Welcome to the webpage for "Paradigm Shift in Natural Language Processing". Some resources of the paper are constantly maintaine

Tianxiang Sun 41 Dec 30, 2022
A Facebook Messenger Chatbot using NLP

A Facebook Messenger Chatbot using NLP This project is about creating a messenger chatbot using basic NLP techniques and models like Logistic Regressi

6 Nov 20, 2022
BERT, LDA, and TFIDF based keyword extraction in Python

BERT, LDA, and TFIDF based keyword extraction in Python kwx is a toolkit for multilingual keyword extraction based on Google's BERT and Latent Dirichl

Andrew Tavis McAllister 41 Dec 27, 2022
This repository contains data used in the NAACL 2021 Paper - Proteno: Text Normalization with Limited Data for Fast Deployment in Text to Speech Systems

Proteno This is the data release associated with the corresponding NAACL 2021 Paper - Proteno: Text Normalization with Limited Data for Fast Deploymen

37 Dec 04, 2022
Paddlespeech Streaming ASR GUI

Paddlespeech-Streaming-ASR-GUI Introduction A paddlespeech Streaming ASR GUI. Us

Niek Zhen 3 Jan 05, 2022
Korean stereoypte detector with TUNiB-Electra and K-StereoSet

Korean Stereotype Detector Korean stereotype sentence classifier using K-StereoSet with TUNiB-Electra Web demo you can test this model easily in demo

Sae_Chan_Oh 11 Feb 18, 2022
中文生成式预训练模型

T5 PEGASUS 中文生成式预训练模型,以mT5为基础架构和初始权重,通过类似PEGASUS的方式进行预训练。 详情可见:https://kexue.fm/archives/8209 Tokenizer 我们将T5 PEGASUS的Tokenizer换成了BERT的Tokenizer,它对中文更

410 Jan 03, 2023
A Multi-modal Model Chinese Spell Checker Released on ACL2021.

ReaLiSe ReaLiSe is a multi-modal Chinese spell checking model. This the office code for the paper Read, Listen, and See: Leveraging Multimodal Informa

DaDa 106 Dec 29, 2022
A fast, efficient universal vector embedding utility package.

Magnitude: a fast, simple vector embedding utility library A feature-packed Python package and vector storage file format for utilizing vector embeddi

Plasticity 1.5k Jan 02, 2023
Asr abc - Automatic speech recognition(ASR),中文语音识别

语音识别的简单示例,主要在课堂演示使用 创建python虚拟环境 在linux 和macos 上验证通过 # 如果已经有pyhon3.6 环境,跳过该步骤,使用

LIyong.Guo 8 Nov 11, 2022
A demo for end-to-end English and Chinese text spotting using ABCNet.

ABCNet_Chinese A demo for end-to-end English and Chinese text spotting using ABCNet. This is an old model that was trained a long ago, which serves as

Yuliang Liu 45 Oct 04, 2022
Text vectorization tool to outperform TFIDF for classification tasks

WHAT: Supervised text vectorization tool Textvec is a text vectorization tool, with the aim to implement all the "classic" text vectorization NLP meth

186 Dec 29, 2022
Tools for curating biomedical training data for large-scale language modeling

Tools for curating biomedical training data for large-scale language modeling

BigScience Workshop 242 Dec 25, 2022
Finds snippets in iambic pentameter in English-language text and tries to combine them to a rhyming sonnet.

Sonnet finder Finds snippets in iambic pentameter in English-language text and tries to combine them to a rhyming sonnet. Usage This is a Python scrip

Marcel Bollmann 11 Sep 25, 2022
Yet Another Sequence Encoder - Encode sequences to vector of vector in python !

Yase Yet Another Sequence Encoder - encode sequences to vector of vectors in python ! Why Yase ? Yase enable you to encode any sequence which can be r

Pierre PACI 12 Aug 19, 2021
Natural language processing summarizer using 3 state of the art Transformer models: BERT, GPT2, and T5

NLP-Summarizer Natural language processing summarizer using 3 state of the art Transformer models: BERT, GPT2, and T5 This project aimed to provide in

Samuel Sharkey 1 Feb 07, 2022
A Python script that compares files in directories

compare-files A Python script that compares files in different directories, this is similar to the command filecmp.cmp(f1, f2). I made this script in

Colvin 1 Oct 15, 2021
DVC-NLP-Simple-usecase

dvc-NLP-simple-usecase DVC NLP project Reference repository: official reference repo DVC STUDIO MY View Bag of Words- Krish Naik TF-IDF- Krish Naik ST

SUNNY BHAVEEN CHANDRA 2 Oct 02, 2022