BERT Attention Analysis

Overview

BERT Attention Analysis

This repository contains code for What Does BERT Look At? An Analysis of BERT's Attention. It includes code for getting attention maps from BERT and writing them to disk, analyzing BERT's attention in general (sections 3 and 6 of the paper), and comparing its attention to dependency syntax (sections 4.2 and 5). We will add the code for the coreference resolution analysis (section 4.3 of the paper) soon!

Requirements

For extracting attention maps from text:

Additional requirements for the attention analysis:

Attention Analysis

Syntax_Analysis.ipynb and General_Analysis.ipynb contain code for analyzing BERT's attention, including reproducing the figures and tables in the paper.

You can download the data needed to run the notebooks (including BERT attention maps on Wikipedia and the Penn Treebank) from here. However, note that the Penn Treebank annotations are not freely available, so the Penn Treebank data only includes dummy labels. If you want to run the analysis on your own data, you can use the scripts described below to extract BERT attention maps.

Extracting BERT Attention Maps

We provide a script for running BERT over text and writing the resulting attention maps to disk. The input data should be a JSON file containing a list of dicts, each one corresponding to a single example to be passed in to BERT. Each dict must contain exactly one of the following fields:

  • "text": A string.
  • "words": A list of strings. Needed if you want word-level rather than token-level attention.
  • "tokens": A list of strings corresponding to BERT wordpiece tokenization.

If the present field is "tokens," the script expects [CLS]/[SEP] tokens to be already added; otherwise it adds these tokens to the beginning/end of the text automatically. Note that if an example is longer than max_sequence_length tokens after BERT wordpiece tokenization, attention maps will not be extracted for it. Attention extraction adds two additional fields to each dict:

  • "attns": A numpy array of size [num_layers, heads_per_layer, sequence_length, sequence_length] containing attention weights.
  • "tokens": If "tokens" was not already provided for the example, the BERT-wordpiece-tokenized text (list of strings).

Other fields already in the feature dicts will be preserved. For example if each dict has a tags key containing POS tags, they will stay in the data after attention extraction so they can be used when analyzing the data.

Attention extraction is run with

python extract_attention.py --preprocessed_data_file 
   
     --bert_dir 
    

    
   

The following optional arguments can also be added:

  • --max_sequence_length: Maximum input sequence length after tokenization (default is 128).
  • --batch_size: Batch size when running BERT over examples (default is 16).
  • --debug: Use a tiny BERT model for fast debugging.
  • --cased: Do not lowercase the input text.
  • --word_level: Compute word-level instead of token-level attention (see Section 4.1 of the paper).

The feature dicts with added attention maps (numpy arrays with shape [n_layers, n_heads_per_layer, n_tokens, n_tokens]) are written to _attn.pkl

Pre-processing Scripts

We include two pre-processing scripts for going from a raw data file to JSON that can be supplied to attention_extractor.py.

preprocess_unlabeled.py does BERT-pre-training-style preprocessing for unlabeled text (i.e, taking two consecutive text spans, truncating them so they are at most max_sequence_length tokens, and adding [CLS]/[SEP] tokens). Each line of the input data file should be one sentence. Documents should be separated by empty lines. Example usage:

python preprocess_unlabeled.py --data-file $ATTN_DATA_DIR/unlabeled.txt --bert-dir $ATTN_DATA_DIR/uncased_L-12_H-768_A-12

will create the file $ATTN_DATA_DIR/unlabeled.json containing pre-processed data. After pre-processing, you can run extract_attention.py to get attention maps, e.g.,

python extract_attention.py --preprocessed-data-file $ATTN_DATA_DIR/unlabeled.json --bert-dir $ATTN_DATA_DIR/uncased_L-12_H-768_A-12

preprocess_depparse.py pre-processes dependency parsing data. Dependency parsing data should consist of two files train.txt and dev.txt under a common directory. Each line in the files should contain a word followed by a space followed by - (e.g., 0-root). Examples should be separated by empty lines. Example usage:

python preprocess_depparse.py --data-dir $ATTN_DATA_DIR/depparse

After pre-processing, you can run extract_attention.py to get attention maps, e.g.,

python extract_attention.py --preprocessed-data-file $ATTN_DATA_DIR/depparse/dev.json --bert-dir $ATTN_DATA_DIR/uncased_L-12_H-768_A-12 --word_level

Computing Distances Between Attention Heads

head_distances.py computes the average Jenson-Shannon divergence between the attention weights of all pairs of attention heads and writes the results to disk as a numpy array of shape [n_heads, n_heads]. These distances can be used to cluster BERT's attention heads (see Section 6 and Figure 6 of the paper; code for doing this clustering is in General_Analysis.ipynb). Example usage (requires that attention maps have already been extracted):

python head_distances.py --attn-data-file $ATTN_DATA_DIR/unlabeled_attn.pkl --outfile $ATTN_DATA_DIR/head_distances.pkl

Citation

If you find the code or data helpful, please cite the original paper:

@inproceedings{clark2019what,
  title = {What Does BERT Look At? An Analysis of BERT's Attention},
  author = {Kevin Clark and Urvashi Khandelwal and Omer Levy and Christopher D. Manning},
  booktitle = {[email protected]},
  year = {2019}
}

Contact

Kevin Clark (@clarkkev).

Owner
Kevin Clark
Kevin Clark
Chatbot with Pytorch, Python & Nextjs

Installation Instructions Make sure that you have Python 3, gcc, venv, and pip installed. Clone the repository $ git clone https://github.com/sahr

Rohit Sah 0 Dec 11, 2022
Pytorch-Named-Entity-Recognition-with-BERT

BERT NER Use google BERT to do CoNLL-2003 NER ! Train model using Python and Inference using C++ ALBERT-TF2.0 BERT-NER-TENSORFLOW-2.0 BERT-SQuAD Requi

Kamal Raj 1.1k Dec 25, 2022
Rank-One Model Editing for Locating and Editing Factual Knowledge in GPT

Rank-One Model Editing (ROME) This repository provides an implementation of Rank-One Model Editing (ROME) on auto-regressive transformers (GPU-only).

Kevin Meng 130 Dec 21, 2022
Tools for curating biomedical training data for large-scale language modeling

Tools for curating biomedical training data for large-scale language modeling

BigScience Workshop 242 Dec 25, 2022
TalkNet: Audio-visual active speaker detection Model

Is someone talking? TalkNet: Audio-visual active speaker detection Model This repository contains the code for our ACM MM 2021 paper, TalkNet, an acti

142 Dec 14, 2022
Code for Emergent Translation in Multi-Agent Communication

Emergent Translation in Multi-Agent Communication PyTorch implementation of the models described in the paper Emergent Translation in Multi-Agent Comm

Facebook Research 75 Jul 15, 2022
Examples of using sparse attention, as in "Generating Long Sequences with Sparse Transformers"

Status: Archive (code is provided as-is, no updates expected) Update August 2020: For an example repository that achieves state-of-the-art modeling pe

OpenAI 1.3k Dec 28, 2022
Translate U is capable of translating the text present in an image from one language to the other.

Translate U is capable of translating the text present in an image from one language to the other. The app uses OCR and Google translate to identify and translate across 80+ languages.

Neelanjan Manna 1 Dec 22, 2021
SciBERT is a BERT model trained on scientific text.

SciBERT is a BERT model trained on scientific text.

AI2 1.2k Dec 24, 2022
Code to use Augmented Shapiro Wilks Stopping, as well as code for the paper "Statistically Signifigant Stopping of Neural Network Training"

This codebase is being actively maintained, please create and issue if you have issues using it Basics All data files are included under losses and ea

Justin Terry 32 Nov 09, 2021
AI_Assistant - This is a Python based Voice Assistant.

This is a Python based Voice Assistant. This was programmed to increase my understanding of python and also how the in-general Voice Assistants work.

1 Jan 06, 2022
pyupbit 라이브러리를 활용하여 upbit에서 비트코인을 자동매매하는 코드입니다. 조코딩 유튜브 채널에서 자세한 강의 영상을 보실 수 있습니다.

파이썬 비트코인 투자 자동화 강의 코드 by 유튜브 조코딩 채널 pyupbit 라이브러리를 활용하여 upbit 거래소에서 비트코인 자동매매를 하는 코드입니다. 파일 구성 test.py : 잔고 조회 (1강) backtest.py : 백테스팅 코드 (2강) bestK.p

조코딩 JoCoding 186 Dec 29, 2022
source code for paper: WhiteningBERT: An Easy Unsupervised Sentence Embedding Approach.

WhiteningBERT Source code and data for paper WhiteningBERT: An Easy Unsupervised Sentence Embedding Approach. Preparation git clone https://github.com

49 Dec 17, 2022
Phrase-BERT: Improved Phrase Embeddings from BERT with an Application to Corpus Exploration

Phrase-BERT: Improved Phrase Embeddings from BERT with an Application to Corpus Exploration This is the official repository for the EMNLP 2021 long pa

70 Dec 11, 2022
Unofficial PyTorch implementation of Google AI's VoiceFilter system

VoiceFilter Note from Seung-won (2020.10.25) Hi everyone! It's Seung-won from MINDs Lab, Inc. It's been a long time since I've released this open-sour

MINDs Lab 881 Jan 03, 2023
Ecco is a python library for exploring and explaining Natural Language Processing models using interactive visualizations.

Visualize, analyze, and explore NLP language models. Ecco creates interactive visualizations directly in Jupyter notebooks explaining the behavior of Transformer-based language models (like GPT2, BER

Jay Alammar 1.6k Dec 25, 2022
A PyTorch Implementation of End-to-End Models for Speech-to-Text

speech Speech is an open-source package to build end-to-end models for automatic speech recognition. Sequence-to-sequence models with attention, Conne

Awni Hannun 647 Dec 25, 2022
SAVI2I: Continuous and Diverse Image-to-Image Translation via Signed Attribute Vectors

SAVI2I: Continuous and Diverse Image-to-Image Translation via Signed Attribute Vectors [Paper] [Project Website] Pytorch implementation for SAVI2I. We

Qi Mao 44 Dec 30, 2022
Line as a Visual Sentence: Context-aware Line Descriptor for Visual Localization

Line as a Visual Sentence with LineTR This repository contains the inference code, pretrained model, and demo scripts of the following paper. It suppo

SungHo Yoon 158 Dec 27, 2022
Khandakar Muhtasim Ferdous Ruhan 1 Dec 30, 2021