BERT Attention Analysis

Overview

BERT Attention Analysis

This repository contains code for What Does BERT Look At? An Analysis of BERT's Attention. It includes code for getting attention maps from BERT and writing them to disk, analyzing BERT's attention in general (sections 3 and 6 of the paper), and comparing its attention to dependency syntax (sections 4.2 and 5). We will add the code for the coreference resolution analysis (section 4.3 of the paper) soon!

Requirements

For extracting attention maps from text:

Additional requirements for the attention analysis:

Attention Analysis

Syntax_Analysis.ipynb and General_Analysis.ipynb contain code for analyzing BERT's attention, including reproducing the figures and tables in the paper.

You can download the data needed to run the notebooks (including BERT attention maps on Wikipedia and the Penn Treebank) from here. However, note that the Penn Treebank annotations are not freely available, so the Penn Treebank data only includes dummy labels. If you want to run the analysis on your own data, you can use the scripts described below to extract BERT attention maps.

Extracting BERT Attention Maps

We provide a script for running BERT over text and writing the resulting attention maps to disk. The input data should be a JSON file containing a list of dicts, each one corresponding to a single example to be passed in to BERT. Each dict must contain exactly one of the following fields:

  • "text": A string.
  • "words": A list of strings. Needed if you want word-level rather than token-level attention.
  • "tokens": A list of strings corresponding to BERT wordpiece tokenization.

If the present field is "tokens," the script expects [CLS]/[SEP] tokens to be already added; otherwise it adds these tokens to the beginning/end of the text automatically. Note that if an example is longer than max_sequence_length tokens after BERT wordpiece tokenization, attention maps will not be extracted for it. Attention extraction adds two additional fields to each dict:

  • "attns": A numpy array of size [num_layers, heads_per_layer, sequence_length, sequence_length] containing attention weights.
  • "tokens": If "tokens" was not already provided for the example, the BERT-wordpiece-tokenized text (list of strings).

Other fields already in the feature dicts will be preserved. For example if each dict has a tags key containing POS tags, they will stay in the data after attention extraction so they can be used when analyzing the data.

Attention extraction is run with

python extract_attention.py --preprocessed_data_file 
   
     --bert_dir 
    

    
   

The following optional arguments can also be added:

  • --max_sequence_length: Maximum input sequence length after tokenization (default is 128).
  • --batch_size: Batch size when running BERT over examples (default is 16).
  • --debug: Use a tiny BERT model for fast debugging.
  • --cased: Do not lowercase the input text.
  • --word_level: Compute word-level instead of token-level attention (see Section 4.1 of the paper).

The feature dicts with added attention maps (numpy arrays with shape [n_layers, n_heads_per_layer, n_tokens, n_tokens]) are written to _attn.pkl

Pre-processing Scripts

We include two pre-processing scripts for going from a raw data file to JSON that can be supplied to attention_extractor.py.

preprocess_unlabeled.py does BERT-pre-training-style preprocessing for unlabeled text (i.e, taking two consecutive text spans, truncating them so they are at most max_sequence_length tokens, and adding [CLS]/[SEP] tokens). Each line of the input data file should be one sentence. Documents should be separated by empty lines. Example usage:

python preprocess_unlabeled.py --data-file $ATTN_DATA_DIR/unlabeled.txt --bert-dir $ATTN_DATA_DIR/uncased_L-12_H-768_A-12

will create the file $ATTN_DATA_DIR/unlabeled.json containing pre-processed data. After pre-processing, you can run extract_attention.py to get attention maps, e.g.,

python extract_attention.py --preprocessed-data-file $ATTN_DATA_DIR/unlabeled.json --bert-dir $ATTN_DATA_DIR/uncased_L-12_H-768_A-12

preprocess_depparse.py pre-processes dependency parsing data. Dependency parsing data should consist of two files train.txt and dev.txt under a common directory. Each line in the files should contain a word followed by a space followed by - (e.g., 0-root). Examples should be separated by empty lines. Example usage:

python preprocess_depparse.py --data-dir $ATTN_DATA_DIR/depparse

After pre-processing, you can run extract_attention.py to get attention maps, e.g.,

python extract_attention.py --preprocessed-data-file $ATTN_DATA_DIR/depparse/dev.json --bert-dir $ATTN_DATA_DIR/uncased_L-12_H-768_A-12 --word_level

Computing Distances Between Attention Heads

head_distances.py computes the average Jenson-Shannon divergence between the attention weights of all pairs of attention heads and writes the results to disk as a numpy array of shape [n_heads, n_heads]. These distances can be used to cluster BERT's attention heads (see Section 6 and Figure 6 of the paper; code for doing this clustering is in General_Analysis.ipynb). Example usage (requires that attention maps have already been extracted):

python head_distances.py --attn-data-file $ATTN_DATA_DIR/unlabeled_attn.pkl --outfile $ATTN_DATA_DIR/head_distances.pkl

Citation

If you find the code or data helpful, please cite the original paper:

@inproceedings{clark2019what,
  title = {What Does BERT Look At? An Analysis of BERT's Attention},
  author = {Kevin Clark and Urvashi Khandelwal and Omer Levy and Christopher D. Manning},
  booktitle = {[email protected]},
  year = {2019}
}

Contact

Kevin Clark (@clarkkev).

Owner
Kevin Clark
Kevin Clark
Ptorch NLU, a Chinese text classification and sequence annotation toolkit, supports multi class and multi label classification tasks of Chinese long text and short text, and supports sequence annotation tasks such as Chinese named entity recognition, part of speech tagging and word segmentation.

Pytorch-NLU,一个中文文本分类、序列标注工具包,支持中文长文本、短文本的多类、多标签分类任务,支持中文命名实体识别、词性标注、分词等序列标注任务。 Ptorch NLU, a Chinese text classification and sequence annotation toolkit, supports multi class and multi label classifi

186 Dec 24, 2022
Official implementations for various pre-training models of ERNIE-family, covering topics of Language Understanding & Generation, Multimodal Understanding & Generation, and beyond.

English|简体中文 ERNIE是百度开创性提出的基于知识增强的持续学习语义理解框架,该框架将大数据预训练与多源丰富知识相结合,通过持续学习技术,不断吸收海量文本数据中词汇、结构、语义等方面的知识,实现模型效果不断进化。ERNIE在累积 40 余个典型 NLP 任务取得 SOTA 效果,并在 G

5.4k Jan 03, 2023
In this project, we aim to achieve the task of predicting emojis from tweets. We aim to investigate the relationship between words and emojis.

Making Emojis More Predictable by Karan Abrol, Karanjot Singh and Pritish Wadhwa, Natural Language Processing (CSE546) under the guidance of Dr. Shad

Karanjot Singh 2 Jan 17, 2022
BERT-based Financial Question Answering System

BERT-based Financial Question Answering System In this example, we use Jina, PyTorch, and Hugging Face transformers to build a production-ready BERT-b

Bithiah Yuan 61 Sep 18, 2022
MHtyper is an end-to-end pipeline for recognized the Forensic microhaplotypes in Nanopore sequencing data.

MHtyper is an end-to-end pipeline for recognized the Forensic microhaplotypes in Nanopore sequencing data. It is implemented using Python.

willow 6 Jun 27, 2022
Kurumi ChatBot

KurumiChatBot Just another Telegram AI chat bot written in Python using Pyrogram. A public running instance can be found on telegram as @TokisakiChatB

Yoga Pranata 3 Jun 28, 2022
Reproduction process of BERT on SST2 dataset

BERT-SST2-Prod Reproduction process of BERT on SST2 dataset 安装说明 下载代码库 git clone https://github.com/JunnYu/BERT-SST2-Prod 进入文件夹,安装requirements pip ins

yujun 1 Nov 18, 2021
Python api wrapper for JellyFish Lights

Python api wrapper for JellyFish Lights The hope is to make this a pip installable package Current capabalilities: Connects to a local JellyFish Light

10 Dec 18, 2022
Text to speech for Vietnamese, ez to use, ez to update

Chào mọi người, đây là dự án mở nhằm giúp việc đọc được trở nên dễ dàng hơn. Rất cảm ơn đội ngũ Zalo đã cung cấp hạ tầng để mình có thể tạo ra app này

Trần Cao Minh Bách 32 Jul 29, 2022
Leon is an open-source personal assistant who can live on your server.

Leon Your open-source personal assistant. Website :: Documentation :: Roadmap :: Contributing :: Story 👋 Introduction Leon is an open-source personal

Leon AI 11.7k Dec 30, 2022
[ICCV 2021] Counterfactual Attention Learning for Fine-Grained Visual Categorization and Re-identification

Counterfactual Attention Learning Created by Yongming Rao*, Guangyi Chen*, Jiwen Lu, Jie Zhou This repository contains PyTorch implementation for ICCV

Yongming Rao 89 Dec 18, 2022
Sploitus - Command line search tool for sploitus.com. Think searchsploit, but with more POCs

Sploitus Command line search tool for sploitus.com. Think searchsploit, but with

watchdog2000 5 Mar 07, 2022
Python-zhuyin - An open source Python library that provides a unified interface for converting between Chinese pinyin and Zhuyin (bopomofo)

Python-zhuyin - An open source Python library that provides a unified interface for converting between Chinese pinyin and Zhuyin (bopomofo)

2 Dec 29, 2022
ReCoin - Restoring our environment and businesses in parallel

Shashank Ojha, Sabrina Button, Abdellah Ghassel, Joshua Gonzales "Reduce Reuse R

sabrina button 1 Mar 14, 2022
Unifying Cross-Lingual Semantic Role Labeling with Heterogeneous Linguistic Resources (NAACL-2021).

Unifying Cross-Lingual Semantic Role Labeling with Heterogeneous Linguistic Resources Description This is the repository for the paper Unifying Cross-

Sapienza NLP group 16 Sep 09, 2022
Winner system (DAMO-NLP) of SemEval 2022 MultiCoNER shared task over 10 out of 13 tracks.

KB-NER: a Knowledge-based System for Multilingual Complex Named Entity Recognition The code is for the winner system (DAMO-NLP) of SemEval 2022 MultiC

116 Dec 27, 2022
Text Classification in Turkish Texts with Bert

You can watch the details of the project on my youtube channel Project Interface Project Second Interface Goal= Correctly guessing the classification

42 Dec 31, 2022
SimBERT升级版(SimBERTv2)!

RoFormer-Sim RoFormer-Sim,又称SimBERTv2,是我们之前发布的SimBERT模型的升级版。 介绍 https://kexue.fm/archives/8454 训练 tensorflow 1.14 + keras 2.3.1 + bert4keras 0.10.6 下载

317 Dec 23, 2022
official ( API ) for the zAmericanEnglish app in [ Google play ] and [ App store ]

official ( API ) for the zAmericanEnglish app in [ Google play ] and [ App store ]

Plugin 3 Jan 12, 2022
SpikeX - SpaCy Pipes for Knowledge Extraction

SpikeX is a collection of pipes ready to be plugged in a spaCy pipeline. It aims to help in building knowledge extraction tools with almost-zero effort.

Erre Quadro Srl 384 Dec 12, 2022