Examples of using sparse attention, as in "Generating Long Sequences with Sparse Transformers"

Overview

Status: Archive (code is provided as-is, no updates expected)

Update August 2020: For an example repository that achieves state-of-the-art modeling performance on CIFAR-10 using Sparse Transformers, please see https://github.com/openai/distribution_augmentation

Sparse Attention

This repository contains the sparse attention primitives used in Sparse Transformers (see blog and paper). Specifically, it includes the following:

  1. A faster implementation of normal attention (the upper triangle is not computed, and many operations are fused).
  2. An implementation of "strided" and "fixed" attention, as in the Sparse Transformers paper.
  3. A simple recompute decorator, which can be adapted for usage with attention.

We hope this code can further accelerate research into sparse attention.

An example Transformer implementation which is close to the version we use internally can be found at https://github.com/openai/blocksparse/blob/master/examples/transformer/enwik8.py.

Overview of kernels

The repository contains fused implementations of the attention operation, which takes in Q, K, V matrices (all of dimensionality batch, time, dim) representing the queries, keys, and values for a sequence. For every query element, a weighted sum of the values is returned, where the weightings are determined by the scaled matrix product of Q and K^T.

The kernels allow specification of block sparsity in the QK^T matrix. This means you define a pattern of 0/1s on a [time/blocksize, time/blocksize] matrix of blocks, and the values where it is 0 will not be computed, and not be included in the softmax calculation. Additionally, one can define "callbacks" on the computed blocks, which will further mask out values in any given block from the softmax (though the matrix product will still be computed for those elements).

Block sizes of {8, 16, 32, 64} are supported, and slight advantages in speed may be seen from using larger blocks.

Prerequisites

For fp32 and blocksize 32, any NVIDIA GPU past Kepler can be used (i.e. compute capability beyond 3.5).

For fp16 and blocksize 8, 16, 32, 64, a GPU with Tensor Cores (e.g. the V100 GPU, compute capability >= 7.0) is required.

The primary dependency is the OpenAI blocksparse package.

With CUDA 10 and tensorflow-gpu, you can install blocksparse with pip install blocksparse.

For other setups, you must install blocksparse from source, and directions can be found in the root of the repository.

Examples

Run the following on a non-V100 GPU:

python attention.py

On a V100 GPU:

python attention.py fp16

General usage

An example can be found at the bottom of attention.py.

full_attn_tf = attention_impl(q, k, v, heads=4, attn_mode="all", recompute=True)
full_attn_bs = blocksparse_attention_impl(q, k, v, heads=4, attn_mode="all", recompute=True)

# first step of strided attention
local_attn_bs = blocksparse_attention_impl(q, k, v, heads=4, attn_mode="local", local_attn_ctx=32, recompute=True)
local_attn_tf = attention_impl(q, k, v, heads=4, attn_mode="local", local_attn_ctx=32, recompute=True)

# second step of strided attention
strided_attn_bs = blocksparse_attention_impl(q, k, v, heads=4, attn_mode="strided", local_attn_ctx=32, recompute=True)
strided_attn_tf = attention_impl(q, k, v, heads=4, attn_mode="strided", local_attn_ctx=32, recompute=True)

# # the 'fixed' attention pattern
fixed = blocksparse_attention_impl(q, k, v, heads=4, attn_mode="fixed", local_attn_ctx=128, num_verts=4, vertsize=1, recompute=True)

Referencing this work

If you find this helpful in your work, you can consider citing the following:

@article{child2019sparsetransformer,
  title={Generating Long Sequences with Sparse Transformers},
  author={Child, Rewon and Gray, Scott and Radford, Alec and Sutskever, Ilya},
  journal={URL https://openai.com/blog/sparse-transformers},
  year={2019}
}
Owner
OpenAI
OpenAI
Google AI 2018 BERT pytorch implementation

BERT-pytorch Pytorch implementation of Google AI's 2018 BERT, with simple annotation BERT 2018 BERT: Pre-training of Deep Bidirectional Transformers f

Junseong Kim 5.3k Jan 07, 2023
pyMorfologik MorfologikpyMorfologik - Python binding for Morfologik.

Python binding for Morfologik Morfologik is Polish morphological analyzer. For more information see http://github.com/morfologik/morfologik-stemming/

Damian Mirecki 18 Dec 29, 2021
MMDA - multimodal document analysis

MMDA - multimodal document analysis

AI2 75 Jan 04, 2023
This repository implements a brute-force spellchecker utilizing the Damerau-Levenshtein edit distance.

About spellchecker.py Implementing a highly-accurate, brute-force, and dynamically programmed spellchecking program that utilizes the Damerau-Levensht

Raihan Ahmed 1 Dec 11, 2021
Trained T5 and T5-large model for creating keywords from text

text to keywords Trained T5-base and T5-large model for creating keywords from text. Supported languages: ru Pretraining Large version | Pretraining B

Danil 61 Nov 24, 2022
CJK computer science terms comparison / 中日韓電腦科學術語對照 / 日中韓のコンピュータ科学の用語対照 / 한·중·일 전산학 용어 대조

CJK computer science terms comparison This repository contains the source code of the website. You can see the website from the following link: Englis

Hong Minhee (洪 民憙) 88 Dec 23, 2022
Pytorch implementation of Tacotron

Tacotron-pytorch A pytorch implementation of Tacotron: A Fully End-to-End Text-To-Speech Synthesis Model. Requirements Install python 3 Install pytorc

soobin seo 203 Dec 02, 2022
skweak: A software toolkit for weak supervision applied to NLP tasks

Labelled data remains a scarce resource in many practical NLP scenarios. This is especially the case when working with resource-poor languages (or text domains), or when using task-specific labels wi

Norsk Regnesentral (Norwegian Computing Center) 850 Dec 28, 2022
Journey is a NLP-Powered Developer assistant

Journey Journey is a NLP-Powered Developer assistant Using on the powerful Natural Language Processing library Mindmeld, this projects aims to assist

Christian Eilers 21 Dec 11, 2022
Sequence model architectures from scratch in PyTorch

This repository implements a variety of sequence model architectures from scratch in PyTorch. Effort has been put to make the code well structured so that it can serve as learning material. The train

Brando Koch 11 Mar 28, 2022
Lightweight utility tools for the detection of multiple spellings, meanings, and language-specific terminology in British and American English

Breame ( British English and American English) Breame is a lightweight Python package with a number of utility tools to aid in the detection of words

Charles 8 Oct 10, 2022
Lingtrain Aligner — ML powered library for the accurate texts alignment.

Lingtrain Aligner ML powered library for the accurate texts alignment in different languages. Purpose Main purpose of this alignment tool is to build

Sergei Averkiev 76 Dec 14, 2022
BERN2: an advanced neural biomedical namedentity recognition and normalization tool

BERN2 We present BERN2 (Advanced Biomedical Entity Recognition and Normalization), a tool that improves the previous neural network-based NER tool by

DMIS Laboratory - Korea University 99 Jan 06, 2023
Contains links to publicly available datasets for modeling health outcomes using speech and language.

speech-nlp-datasets Contains links to publicly available datasets for modeling various health outcomes using speech and language. Speech-based Corpora

Tuka Alhanai 77 Dec 07, 2022
A Facebook Messenger Chatbot using NLP

A Facebook Messenger Chatbot using NLP This project is about creating a messenger chatbot using basic NLP techniques and models like Logistic Regressi

6 Nov 20, 2022
Python wrapper for Stanford CoreNLP tools v3.4.1

Python interface to Stanford Core NLP tools v3.4.1 This is a Python wrapper for Stanford University's NLP group's Java-based CoreNLP tools. It can eit

Dustin Smith 610 Sep 07, 2022
Utilizing RBERT model for KLUE Relation Extraction task

RBERT for Relation Extraction task for KLUE Project Description Relation Extraction task is one of the task of Korean Language Understanding Evaluatio

snoop2head 14 Nov 15, 2022
Knowledge Oriented Programming Language

KoPL: 面向知识的推理问答编程语言 安装 | 快速开始 | 文档 KoPL全称 Knowledge oriented Programing Language, 是一个为复杂推理问答而设计的编程语言。我们可以将自然语言问题表示为由基本函数组合而成的KoPL程序,程序运行的结果就是问题的答案。目前,

THU-KEG 62 Dec 12, 2022
In this project, we aim to achieve the task of predicting emojis from tweets. We aim to investigate the relationship between words and emojis.

Making Emojis More Predictable by Karan Abrol, Karanjot Singh and Pritish Wadhwa, Natural Language Processing (CSE546) under the guidance of Dr. Shad

Karanjot Singh 2 Jan 17, 2022
Contains analysis of trends from Fitbit Dataset (source: Kaggle) to see how the trends can be applied to Bellabeat customers and Bellabeat products

Contains analysis of trends from Fitbit Dataset (source: Kaggle) to see how the trends can be applied to Bellabeat customers and Bellabeat products.

Leah Pathan Khan 2 Jan 12, 2022