Code for paper "Which Training Methods for GANs do actually Converge? (ICML 2018)"

Overview

GAN stability

This repository contains the experiments in the supplementary material for the paper Which Training Methods for GANs do actually Converge?.

To cite this work, please use

@INPROCEEDINGS{Mescheder2018ICML,
  author = {Lars Mescheder and Sebastian Nowozin and Andreas Geiger},
  title = {Which Training Methods for GANs do actually Converge?},
  booktitle = {International Conference on Machine Learning (ICML)},
  year = {2018}
}

You can find further details on our project page.

Usage

First download your data and put it into the ./data folder.

To train a new model, first create a config script similar to the ones provided in the ./configs folder. You can then train you model using

python train.py PATH_TO_CONFIG

To compute the inception score for your model and generate samples, use

python test.py PATH_TO_CONFIG

Finally, you can create nice latent space interpolations using

python interpolate.py PATH_TO_CONFIG

or

python interpolate_class.py PATH_TO_CONFIG

Pretrained models

We also provide several pretrained models.

You can use the models for sampling by entering

python test.py PATH_TO_CONFIG

where PATH_TO_CONFIG is one of the config files

configs/pretrained/celebA_pretrained.yaml
configs/pretrained/celebAHQ_pretrained.yaml
configs/pretrained/imagenet_pretrained.yaml
configs/pretrained/lsun_bedroom_pretrained.yaml
configs/pretrained/lsun_bridge_pretrained.yaml
configs/pretrained/lsun_church_pretrained.yaml
configs/pretrained/lsun_tower_pretrained.yaml

Our script will automatically download the model checkpoints and run the generation. You can find the outputs in the output/pretrained folders. Similarly, you can use the scripts interpolate.py and interpolate_class.py for generating interpolations for the pretrained models.

Please note that the config files *_pretrained.yaml are only for generation, not for training new models: when these configs are used for training, the model will be trained from scratch, but during inference our code will still use the pretrained model.

Notes

  • Batch normalization is currently not supported when using an exponential running average, as the running average is only computed over the parameters of the models and not the other buffers of the model.

Results

celebA-HQ

celebA-HQ

Imagenet

Imagenet 0 Imagenet 1 Imagenet 2 Imagenet 3 Imagenet 4

Owner
Lars Mescheder
Lars Mescheder
Integrating the Best of TF into PyTorch, for Machine Learning, Natural Language Processing, and Text Generation. This is part of the CASL project: http://casl-project.ai/

Texar-PyTorch is a toolkit aiming to support a broad set of machine learning, especially natural language processing and text generation tasks. Texar

ASYML 726 Dec 30, 2022
Graphical user interface for Argos Translate

Argos Translate GUI Website | GitHub | PyPI Graphical user interface for Argos Translate. Install pip3 install argostranslategui

Argos Open Tech 16 Dec 07, 2022
This repository contains Python scripts for extracting linguistic features from Filipino texts.

Filipino Text Linguistic Feature Extractors This repository contains scripts for extracting linguistic features from Filipino texts. The scripts were

Joseph Imperial 1 Oct 05, 2021
Just Another Telegram Ai Chat Bot Written In Python With Pyrogram.

OkaeriChatBot Just another Telegram AI chat bot written in Python using Pyrogram. Requirements Python 3.7 or higher.

Wahyusaputra 2 Dec 23, 2021
Grading tools for Advanced NLP (11-711)Grading tools for Advanced NLP (11-711)

Grading tools for Advanced NLP (11-711) Installation You'll need docker and unzip to use this repo. For docker, visit the official guide to get starte

Hao Zhu 2 Sep 27, 2022
🤗Transformers: State-of-the-art Natural Language Processing for Pytorch and TensorFlow 2.0.

State-of-the-art Natural Language Processing for PyTorch and TensorFlow 2.0 🤗 Transformers provides thousands of pretrained models to perform tasks o

Hugging Face 77.3k Jan 03, 2023
Pretrain CPM - 大规模预训练语言模型的预训练代码

CPM-Pretrain 版本更新记录 为了促进中文自然语言处理研究的发展,本项目提供了大规模预训练语言模型的预训练代码。项目主要基于DeepSpeed、Megatron实现,可以支持数据并行、模型加速、流水并行的代码。 安装 1、首先安装pytorch等基础依赖,再安装APEX以支持fp16。 p

Tsinghua AI 37 Dec 06, 2022
Turkish Stop Words Türkçe Dolgu Sözcükleri

trstop Turkish Stop Words Türkçe Dolgu Sözcükleri In this repository I put Turkish stop words that is contained in the first 10 thousand words with th

Ahmet Aksoy 103 Nov 12, 2022
translate using your voice

speech-to-text-translator Usage translate using your voice description this project makes translating a word easy, all you have to do is speak and...

1 Oct 18, 2021
A model library for exploring state-of-the-art deep learning topologies and techniques for optimizing Natural Language Processing neural networks

A Deep Learning NLP/NLU library by Intel® AI Lab Overview | Models | Installation | Examples | Documentation | Tutorials | Contributing NLP Architect

Intel Labs 2.9k Jan 02, 2023
fastai ulmfit - Pretraining the Language Model, Fine-Tuning and training a Classifier

fast.ai ULMFiT with SentencePiece from pretraining to deployment Motivation: Why even bother with a non-BERT / Transformer language model? Short answe

Florian Leuerer 26 May 27, 2022
A text augmentation tool for named entity recognition.

neraug This python library helps you with augmenting text data for named entity recognition. Augmentation Example Reference from An Analysis of Simple

Hiroki Nakayama 48 Oct 11, 2022
Code release for NeX: Real-time View Synthesis with Neural Basis Expansion

NeX: Real-time View Synthesis with Neural Basis Expansion Project Page | Video | Paper | COLAB | Shiny Dataset We present NeX, a new approach to novel

537 Jan 05, 2023
A fast hierarchical dimensionality reduction algorithm.

h-NNE: Hierarchical Nearest Neighbor Embedding A fast hierarchical dimensionality reduction algorithm. h-NNE is a general purpose dimensionality reduc

Marios Koulakis 35 Dec 12, 2022
⚡ boost inference speed of T5 models by 5x & reduce the model size by 3x using fastT5.

Reduce T5 model size by 3X and increase the inference speed up to 5X. Install Usage Details Functionalities Benchmarks Onnx model Quantized onnx model

Kiran R 399 Jan 05, 2023
TFPNER: Exploration on the Named Entity Recognition of Token Fused with Part-of-Speech

TFPNER TFPNER: Exploration on the Named Entity Recognition of Token Fused with Part-of-Speech Named entity recognition (NER), which aims at identifyin

1 Feb 07, 2022
Anuvada: Interpretable Models for NLP using PyTorch

Anuvada: Interpretable Models for NLP using PyTorch So, you want to know why your classifier arrived at a particular decision or why your flashy new d

EDGE 102 Oct 01, 2022
Summarization, translation, sentiment-analysis, text-generation and more at blazing speed using a T5 version implemented in ONNX.

Summarization, translation, Q&A, text generation and more at blazing speed using a T5 version implemented in ONNX. This package is still in alpha stag

Abel 211 Dec 28, 2022
DANeS is an open-source E-newspaper dataset by collaboration between DATASET JSC (dataset.vn) and AIV Group (aivgroup.vn)

DANeS - Open-source E-newspaper dataset Source: Technology vector created by macrovector - www.freepik.com. DANeS is an open-source E-newspaper datase

DATASET .JSC 64 Aug 17, 2022