Implemented shortest-circuit disambiguation, maximum probability disambiguation, HMM-based lexical annotation and BiLSTM+CRF-based named entity recognition

Overview

To Startup

进入根目录(ner文件夹 或 seg_tag文件夹),执行:

pip install -r requirements.txt

等待环境配置完成

程序入口为main.py文件,执行:

python main.py

seg_tag文件夹中将会一次性输出:

  1. 最大概率分词结果与P、R、F
  2. 最大概率分词(加法平滑)结果与P、R、F
  3. 最大概率分词(Jelinek-Mercer插值法平滑)结果与P、R、F
  4. 最短路分词结果与P、R、F
  5. 词性标注结果与两种评分的P、R、F
  6. 各算法耗时

ner文件夹中将会输出:

  1. 各标签的数量和各自的P、R、F
  2. 测试集上的P、R、F
  3. 混淆矩阵
  4. 算法耗时

自动分词与词性标注部分

文件结构

D:.
│  clean.ipynb # 处理数据集dag.py # 建图dictionary.py # 建立词典main.py # 程序入口mpseg.py # 最大概率分词模块pos.py # 词性标注模块spseg.py # 最短路分词模块requirements.txttrie.py # trie树score.py # 函数
│
├─data # 数据集sequences.txtwordpieces.txt
│          
└─__pycache__

每个模块均经过单元测试和集成测试

代码注释采用Google风格

建立词典

定义class Trie作为词典数据结构,在Trie的尾节点保存该词出现的次数与词性。

使用Trie可以最大化节约空间开销。

定义class Dictionary作为词典,并统计词频、词性、转移矩阵、发射矩阵等。

基于词典的最短路分词

给定句子sentence[N],调用类SPseg中的spcut方法,代码依次执行:

  1. 依据词典建立有向无环图(调用类DAG
  2. 最短路dp (调用dp函数)
  3. 回溯得到最短路径
  4. 返回分词结果

最短路分词获得的是尽可能小的分词集合。

基于统计的最大概率分词

给定句子sentence[N],调用类MPseg中的mpcut方法,代码依次执行:

  1. 依据词典建立有向无环图(调用类DAG
  2. 根据类Dictionary中统计的词频计算边权(边权为该词出现的概率)
  3. 最短路dp (调用dp函数)
  4. 回溯得到最短路径
  5. 返回分词结果

最大概率分词得到的分词结果y满足 $$ y = argmax{P(y|x)} = argmax \frac{P(x|y)P(y)}{P(x)} $$ 其中$P(x), P(x|y)$是常数,即: $$ y & = argmax P(y|x)\ & = argmax P(y) \ & = argmax \prod_1^n P(w_i) \ & = argmax log(\prod_1^n P(w_i))\ & = argmin (- \sum_i^m log(P(w_i)) )\ $$ 最大概率即可等价于在DAG上求边权为$-log(P)$的最短路径

数据平滑

考虑到unseen event,对于频率为0的事件,我们也应分配一定的概率。

代码给出了两种数据平滑方式:

  1. Adding smoothing (加法平滑方法)
  2. Jelinek-Mercer interpolation (JM插值法)

Adding smoothing: $$ P(w_i) = \frac{\delta + c(w_i)}{\delta|V| + \sum_j c(w_j)} $$ 代码中取$\delta = 1$

Jelinek-Mercer interpolation $$ P(w_i) = \lambda P_{ML}(w_i) + (1-\lambda)P_{unif} $$ 思想为n元模型的概率由n元模型和n-1元模型插值而成

代码中取0元模型为均匀分布:$P_{unif} = \frac{1}{|V|}$,并给出$\lambda$的默认值为0.9

基于HMM的词性标注

HMM是一种概率图模型,基于统计学习得到emission matrix和transition matrix,推断给定观测序列(分词结果)的隐状态(词性序列)。

给出分词结果,调用类WordTagging中的tagging方法,代码依次执行:

  1. 根据词频计算发射概率和转移概率
  2. Viterbi decoding,找到具有最大概率的隐状态序列
  3. 回溯,得到隐状态序列

HMM经Viterbi解码得到的词性序列满足: $$ y & = argmax P(y|x)\ & = argmax \frac{P(y)P(x|y)}{P(x)} \ & = argmax P(y)\ & = argmax {\pi[t_i]b_1[w_1] \prod_1^{n-1} a[t_i][t_{i+1}]b_{i+1}[w_{i+1}]} \ & = argmax {log(\pi[t_i]b_1[w_1] \prod_1^{n-1} a[t_i][t_{i+1}]b_{i+1}[w_{i+1}])}\ & = argmin {-( log(\pi[t_i]) + log(b_1[w_1]) + \sum_i^m {log(a[t_i][t_{i+1}])+log(b_{i+1}[w_{i+1}])} )}\ $$

准确率、召回率、F1 score与性能

由公式: $$ P = \frac{系统输出的正确结果}{系统输出的全部结果个数} \ R = \frac{系统输出的正确结果}{测试集中的结果个数} \ F = \frac{2\times P \times R}{P+R} $$ 执行python main.py命令,在测试数据上推断,可得到上述全部分词、词性标注结果,并得到准确率、召回率、F1 score和性能指标

分词准确率:MP(with JM smoothing) = MP(with Add1 smoothing) > MP(no smoothing) = SP

使用平滑技术能得到更好的分词效果,统计方法(MP)比词典法能得到更好的分词效果。

HMM词性标注中,先利用MP(with JM smoothing) 法分词,再对分词结果进行词性标注。同时采用了粗略的评价指标(不考虑顺序)和严格的评价指标(考虑顺序)。

对于给定的长为N的序列:

Methods Inference Time Complexity
MP分词 $O(N+M)$
SP分词 $O(N+M)$
HMM词性标注 $O(T^2N)$

其中,$M$为DAG中的边数,$T$词性总数。因此三个算法的推断复杂度都是线性的

命名实体识别部分

采用BiLSTM+CRF模型

img

其中,BiLSTM输入是给定的sentence(embedding sequence),输出为该词对应的命名实体标签。它通过双向的设置学习到观测序列(输入的字)之间的依赖,在训练过程中,LSTM能够根据目标(比如识别实体)自动提取观测序列的特征。但是,BiLSTM无法学习到输出序列之间的依赖与约束关系。

CRF等同于在BiLSTM的输出上添加了一层约束,使得模型也能学习到输出序列内部之间的的依赖。传统的CRF需要人为给出特征模板,但在该模型中,特征函数将由模型自行学习得到。

文件结构

D:.
│  dataloader.py # 载入数据集evaluation.py # 评估模型main.py # 程序入口model.py # BiLSTM、BiLSTM+CRF模型utils.py # 函数requirements.txt
│
├─data_ner # 数据集dev.char.bmestest.char.bmestrain.char.bmes
│
├─results # 训练好的模型BiLSTM+CRF.pkl
│
└─__pycache__

参数设置

Total epoches Batch size learning rate hidden size embedding size
30 64 0.001 128 128

每结束一个epoch,模型在验证集上评估,选取在验证集上效果最好的模型作为最终模型(optimal model)。

模型在测试集上能达到95%以上的准确率。

Reference

[1] 宗成庆 《统计自然语言处理》

[2] Lample G, Ballesteros M, Subramanian S, et al. Neural architectures for named entity recognition[J]. arXiv preprint arXiv:1603.01360, 2016.

[3] blog: 1. Understanding LSTM Networks -- colah's blog, 2. CRF Layer on the Top of BiLSTM - 1 | CreateMoMo

[4] code: 1. hiyoung123/ChineseSegmentation: 中文分词 (github.com) ,2. luopeixiang/named_entity_recognition: 中文命名实体识别(github.com), 3. Advanced: Making Dynamic Decisions and the Bi-LSTM CRF — PyTorch Tutorials 1.9.1+cu102 documentation

[5] dataset: 1. jiesutd/LatticeLSTM: Chinese NER using Lattice LSTM. Code for ACL 2018 paper. (github.com), 2. 人民日报1998

🚀 RocketQA, dense retrieval for information retrieval and question answering, including both Chinese and English state-of-the-art models.

In recent years, the dense retrievers based on pre-trained language models have achieved remarkable progress. To facilitate more developers using cutt

475 Jan 04, 2023
A deep learning-based translation library built on Huggingface transformers

DL Translate A deep learning-based translation library built on Huggingface transformers and Facebook's mBART-Large 💻 GitHub Repository 📚 Documentat

Xing Han Lu 244 Dec 30, 2022
OCR을 이용하여 인원수를 인식 후 줌을 Kill 해줍니다

How To Use killtheZoom-2.0 Windows 0. https://joyhong.tistory.com/79 이 글을 보면서 tesseract를 C:\Program Files\Tesseract-OCR 경로로 설치해주세요(한국어 언어 추가 필요) 상단의 초

김정인 9 Sep 13, 2021
An open source framework for seq2seq models in PyTorch.

pytorch-seq2seq Documentation This is a framework for sequence-to-sequence (seq2seq) models implemented in PyTorch. The framework has modularized and

International Business Machines 1.4k Jan 02, 2023
RoNER is a Named Entity Recognition model based on a pre-trained BERT transformer model trained on RONECv2

RoNER RoNER is a Named Entity Recognition model based on a pre-trained BERT transformer model trained on RONECv2. It is meant to be an easy to use, hi

Stefan Dumitrescu 9 Nov 07, 2022
[WWW 2021 GLB] New Benchmarks for Learning on Non-Homophilous Graphs

New Benchmarks for Learning on Non-Homophilous Graphs Here are the codes and datasets accompanying the paper: New Benchmarks for Learning on Non-Homop

94 Dec 21, 2022
Switch spaces for knowledge graph embeddings

SwisE Switch spaces for knowledge graph embeddings. Requirements: python3 pytorch numpy tqdm Reproduce the results To reproduce the reported results,

Shuai Zhang 4 Dec 01, 2021
Pytorch-version BERT-flow: One can apply BERT-flow to any PLM within Pytorch framework.

Pytorch-version BERT-flow: One can apply BERT-flow to any PLM within Pytorch framework.

Ubiquitous Knowledge Processing Lab 59 Dec 01, 2022
Ceaser-Cipher - The Caesar Cipher technique is one of the earliest and simplest method of encryption technique

Ceaser-Cipher The Caesar Cipher technique is one of the earliest and simplest me

Lateefah Ajadi 2 May 12, 2022
Local cross-platform machine translation GUI, based on CTranslate2

DesktopTranslator Local cross-platform machine translation GUI, based on CTranslate2 Download Windows Installer You can either download a ready-made W

Yasmin Moslem 29 Jan 05, 2023
Train 🤗-transformers model with Poutyne.

poutyne-transformers Train 🤗 -transformers models with Poutyne. Installation pip install poutyne-transformers Example import torch from transformers

Lennart Keller 2 Dec 18, 2022
A Plover python dictionary allowing for consistent symbol input with specification of attachment and capitalisation in one stroke.

Emily's Symbol Dictionary Design This dictionary was created with the following goals in mind: Have a consistent method to type (pretty much) every sy

Emily 68 Jan 07, 2023
Google AI 2018 BERT pytorch implementation

BERT-pytorch Pytorch implementation of Google AI's 2018 BERT, with simple annotation BERT 2018 BERT: Pre-training of Deep Bidirectional Transformers f

Junseong Kim 5.3k Jan 07, 2023
Repositório da disciplina no semestre 2021-2

Avisos! Nenhum aviso! Compiladores 1 Este é o Git da disciplina Compiladores 1. Aqui ficará o material produzido em sala de aula assim como tarefas, w

6 May 13, 2022
Phrase-BERT: Improved Phrase Embeddings from BERT with an Application to Corpus Exploration

Phrase-BERT: Improved Phrase Embeddings from BERT with an Application to Corpus Exploration This is the official repository for the EMNLP 2021 long pa

70 Dec 11, 2022
Facilitating the design, comparison and sharing of deep text matching models.

MatchZoo Facilitating the design, comparison and sharing of deep text matching models. MatchZoo 是一个通用的文本匹配工具包,它旨在方便大家快速的实现、比较、以及分享最新的深度文本匹配模型。 🔥 News

Neural Text Matching Community 3.7k Jan 02, 2023
Code for Emergent Translation in Multi-Agent Communication

Emergent Translation in Multi-Agent Communication PyTorch implementation of the models described in the paper Emergent Translation in Multi-Agent Comm

Facebook Research 75 Jul 15, 2022
A desktop GUI providing an audio interface for GPT3.

Jabberwocky neil_degrasse_tyson_with_audio.mp4 Project Description This GUI provides an audio interface to GPT-3. My main goal was to provide a conven

16 Nov 27, 2022
Official PyTorch code for ClipBERT, an efficient framework for end-to-end learning on image-text and video-text tasks

Official PyTorch code for ClipBERT, an efficient framework for end-to-end learning on image-text and video-text tasks. It takes raw videos/images + text as inputs, and outputs task predictions. ClipB

Jie Lei 雷杰 612 Jan 04, 2023
Sentiment-Analysis and EDA on the IMDB Movie Review Dataset

Sentiment-Analysis and EDA on the IMDB Movie Review Dataset The main part of the work focuses on the exploration and study of different approaches whi

Nikolas Petrou 1 Jan 12, 2022