Model parallel transformers in JAX and Haiku

Overview

Table of contents

  1. Mesh Transformer JAX
    1. Updates
  2. Pretrained Models
    1. GPT-J-6B
      1. Links
      2. Acknowledgments
      3. License
      4. Model Details
      5. Zero-Shot Evaluations
  3. Architecture and Usage
    1. Fine-tuning
    2. JAX Dependency
  4. TODO

Mesh Transformer JAX

A haiku library using the xmap/pjit operators in JAX for model parallelism of transformers.

The parallelism scheme is similar to the original Megatron-LM, which is efficient on TPUs due to the high speed 2d mesh network. There is also an experimental model version which implements ZeRo style sharding.

This library is designed for scalability up to approximately 40B parameters on TPUv3s, beyond which different parallelism strategies should be used. See other implementations such as GPT-NeoX or DeepSpeed for that.

One future direction for research is integrating this codebase with swarm-jax, to achieve further scalability with pipeline parallelism.

Updates

12-07-21: Added guide to fine tuning

Pretrained Models

GPT-J-6B

A 6 billion parameter, autoregressive text generation model trained on The Pile.

Links

Slim weights (bf16 weights only, for inference, 9GB)

Full weights (including optimizer params, 61GB)

Colab demo

Web demo

Aran's blog post

Acknowledgments

This project would not have been possible without compute generously provided by the TPU Research Cloud with assistance from EleutherAI.

Thanks to the Cloud TPU team at Google for providing early access to the Cloud TPU VM alpha (now publicly available!)

Thanks to everyone who have helped out one way or another (listed alphabetically):

  • Aran Komatsuzaki for advice with experiment design and writing the blog posts.
  • James Bradbury for valuable assistance with debugging JAX issues.
  • Janko Prester for creating the web demo frontend.
  • Laurence Golding for adding some features to the web demo.
  • Leo Gao for running zero shot evaluations for the baseline models for the table.

License

The weights of GPT-J-6B are licensed under version 2.0 of the Apache License.

Model Details

Hyperparameter Value
n_parameters 6,053,381,344
n_layers 28*
d_model 4,096
d_ff 16,384
n_heads 16
d_head 256
n_ctx 2,048
n_vocab 50,257 (same tokenizer as GPT-2/3)
position encoding Rotary position encodings (RoPE)
RoPE dimensions 64

* each layer consists of one feedforward block and one self attention block

The model consists of 28 layers with a model dimension of 4096, and a feedforward dimension of 16384. The model dimension is split into 16 heads, each with a dimension of 256. Rotary position encodings (RoPE) was applied to 64 dimensions of each head. The model is trained with a tokenization vocabulary of 50257, using the same set of BPEs as GPT-2/GPT-3.

Zero-Shot Evaluations

Models roughly sorted by performance, or by FLOPs if not available.

Model Weights Training FLOPs LAMBADA PPL ↓ LAMBADA Acc ↑ Winogrande ↑ Hellaswag ↑ PIQA ↑ Dataset Size (GB)
Chance 0 ~a lot ~0% 50% 25% 25% 0
GPT-3-Ada‡ ----- 9.95 51.6% 52.9% 43.4% 70.5% -----
GPT-2-1.5B ----- 10.63 51.21% 59.4% 50.9% 70.8% 40
GPTNeo-1.3B‡ 3.0e21 7.50 57.2% 55.0% 48.9% 71.1% 825
Megatron-2.5B* 2.4e21 ----- 61.7% ----- ----- ----- 174
GPTNeo-2.7B‡ 6.8e21 5.63 62.2% 56.5% 55.8% 73.0% 825
GPT-3-1.3B*‡ 2.4e21 5.44 63.6% 58.7% 54.7% 75.1% ~800
GPT-3-Babbage‡ ----- 5.58 62.4% 59.0% 54.5% 75.5% -----
Megatron-8.3B* 7.8e21 ----- 66.5% ----- ----- ----- 174
GPT-3-2.7B*‡ 4.8e21 4.60 67.1% 62.3% 62.8% 75.6% ~800
Megatron-11B† 1.0e22 ----- ----- ----- ----- ----- 161
GPT-J-6B 1.5e22 3.99 69.7% 65.3% 66.1% 76.5% 825
GPT-3-6.7B*‡ 1.2e22 4.00 70.3% 64.5% 67.4% 78.0% ~800
GPT-3-Curie‡ ----- 4.00 69.3% 65.6% 68.5% 77.9% -----
GPT-3-13B*‡ 2.3e22 3.56 72.5% 67.9% 70.9% 78.5% ~800
GPT-3-175B*‡ 3.1e23 3.00 76.2% 70.2% 78.9% 81.0% ~800
GPT-3-Davinci‡ ----- 3.0 75% 72% 78% 80% -----
Gopher 230B* 6.31E+23 ----- 74.50% 70.10% 79.20% 81.80% 1344
MT-NLG 530B*‡ ----- ----- 76.6% 73.0% 80.2% 82.0% -----

* represents evaluation numbers reported by their respective authors, all other numbers are provided by running the lm-evaluation-harness either with the released weights or with API access. Due to subtle implementation differences as well as different zero shot task framing, these might not be directly comparable. See this blog post for more details.

The Megatron-11B model provides no comparable metrics, and several implementations using the released weights do not reproduce the generation quality and evaluations. (see 1 2 3) Thus, evaluation was not attempted.

These models have been trained with data which contains possible test set contamination. The OpenAI GPT-3 models failed to deduplicate training data for certain test sets, while the GPT-Neo models as well as this one is trained on The Pile, which has not been deduplicated against any test sets.

Architecture and Usage

Most scripts in this repository are designed to be run on TPUs, which under the TPU-VM architecture are virtual machines which can run arbitrary code. Most scripts are designed to spin up a TPU, SSH into it to set up the dependencies and copy code over from the local directory, and then start a Ray worker which can accept RPC calls.

The TPUVMs handles running model training steps and evaluation, checkpoint save and loading, while the driver python program handles data loading and general orchestration (such as when to save checkpoints etc).

This means that most scripts (train.py, eval_harness.py etc) expect to be running on a GCE virtual machine in the same region as the TPUs, to minimize RPC latency and data transfer cost. Other scripts (usually ones which don't take a --tpu argument, such as device_sample.py, device_serve.py or device_train.py) expect to be run directly on a TPUVM. The device_* scripts only work on a v3-8 and not on larger pods.

Furthermore, there is an example (resharding_example.py) of how to convert the provided checkpoints (which have 8 shards in the case of GPT-J-6B) down to a smaller number, such as for when running on GPU(s).

Fine-tuning

To fine-tune the model, run device_train.py on a TPU VM. Using a TPU v3-8, you can fine-tune at a rate of ~5000 tokens/second, which should be sufficient for small-to-medium-size datasets.

Please read the step by step guide for thorough fine-tuning instructions.

JAX Dependency

Note this library has some specific requirements for JAX version. Specifically, to use the v1 models (including GPT-J 6B), jax==0.2.12 is required. This in turn depends on jaxlib==0.1.68. If this is not done, you will get cryptic xmap errors

However, to use the v2 model code (no publicly released weights), the newest JAX version can be used.

Citation

To cite this repository:

@misc{mesh-transformer-jax,
  author = {Wang, Ben},
  title = {{Mesh-Transformer-JAX: Model-Parallel Implementation of Transformer Language Model with JAX}},
  howpublished = {\url{https://github.com/kingoflolz/mesh-transformer-jax}},
  year = 2021,
  month = May
}

To cite the weights of GPT-J-6B:

@misc{gpt-j,
  author = {Wang, Ben and Komatsuzaki, Aran},
  title = {{GPT-J-6B: A 6 Billion Parameter Autoregressive Language Model}},
  howpublished = {\url{https://github.com/kingoflolz/mesh-transformer-jax}},
  year = 2021,
  month = May
}

If you use this repository or any of the pretrained weights to do something cool, we would love to hear about it. Feel free to open a github issue or reach out over email (in profile).

TODO

  • disentangle heads and shards
  • test/benchmark on TPU
  • implement gradient checkpointing
  • fix initialization
  • mixed precision
  • deal with preemptible TPUs
  • test and validate generation
  • shard activations instead of replicating for memory efficiency (in v2)
  • support ZeRO style sharding (in v2)
Owner
Ben Wang
Ben Wang
基于百度的语音识别,用python实现,pyaudio+pyqt

Speech-recognition 基于百度的语音识别,python3.8(conda)+pyaudio+pyqt+baidu-aip 百度有面向python

J-L 1 Jan 03, 2022
Pattern Matching in Python

Pattern Matching finalmente chega no Python 3.10. E daí? "Pattern matching", ou "correspondência de padrões" como é conhecido no Brasil. Algumas pesso

Fabricio Werneck 6 Feb 16, 2022
Rhyme with AI

Local development Create a conda virtual environment and activate it: conda env create --file environment.yml conda activate rhyme-with-ai Install the

GoDataDriven 28 Nov 21, 2022
Transformers and related deep network architectures are summarized and implemented here.

Transformers: from NLP to CV This is a practical introduction to Transformers from Natural Language Processing (NLP) to Computer Vision (CV) Introduct

Ibrahim Sobh 138 Dec 27, 2022
RuCLIP tiny (Russian Contrastive Language–Image Pretraining) is a neural network trained to work with different pairs (images, texts).

RuCLIPtiny Zero-shot image classification model for Russian language RuCLIP tiny (Russian Contrastive Language–Image Pretraining) is a neural network

Shahmatov Arseniy 26 Sep 20, 2022
This repository contains the code for "Exploiting Cloze Questions for Few-Shot Text Classification and Natural Language Inference"

Pattern-Exploiting Training (PET) This repository contains the code for Exploiting Cloze Questions for Few-Shot Text Classification and Natural Langua

Timo Schick 1.4k Dec 30, 2022
Prithivida 690 Jan 04, 2023
CDLA: A Chinese document layout analysis (CDLA) dataset

CDLA: A Chinese document layout analysis (CDLA) dataset 介绍 CDLA是一个中文文档版面分析数据集,面向中文文献类(论文)场景。包含以下10个label: 正文 标题 图片 图片标题 表格 表格标题 页眉 页脚 注释 公式 Text Title

buptlihang 84 Dec 28, 2022
Create a semantic search engine with a neural network (i.e. BERT) whose knowledge base can be updated

Create a semantic search engine with a neural network (i.e. BERT) whose knowledge base can be updated. This engine can later be used for downstream tasks in NLP such as Q&A, summarization, generation

Diego 1 Mar 20, 2022
A combination of autoregressors and autoencoders using XLNet for sentiment analysis

A combination of autoregressors and autoencoders using XLNet for sentiment analysis Abstract In this paper sentiment analysis has been performed in or

James Zaridis 2 Nov 20, 2021
Module for automatic summarization of text documents and HTML pages.

Automatic text summarizer Simple library and command line utility for extracting summary from HTML pages or plain texts. The package also contains sim

Mišo Belica 3k Jan 08, 2023
An automated program that helps customers of Pizza Palour place their pizza orders

PIzza_Order_Assistant Introduction An automated program that helps customers of Pizza Palour place their pizza orders. The program uses voice commands

Tindi Sommers 1 Dec 26, 2021
Training open neural machine translation models

Train Opus-MT models This package includes scripts for training NMT models using MarianNMT and OPUS data for OPUS-MT. More details are given in the Ma

Language Technology at the University of Helsinki 167 Jan 03, 2023
A very simple framework for state-of-the-art Natural Language Processing (NLP)

A very simple framework for state-of-the-art NLP. Developed by Humboldt University of Berlin and friends. IMPORTANT: (30.08.2020) We moved our models

flair 12.3k Dec 31, 2022
👄 The most accurate natural language detection library for Python, suitable for long and short text alike

1. What does this library do? Its task is simple: It tells you which language some provided textual data is written in. This is very useful as a prepr

Peter M. Stahl 334 Dec 30, 2022
Parrot is a paraphrase based utterance augmentation framework purpose built to accelerate training NLU models

Parrot is a paraphrase based utterance augmentation framework purpose built to accelerate training NLU models. A paraphrase framework is more than just a paraphrasing model.

Prithivida 681 Jan 01, 2023
This repo contains simple to use, pretrained/training-less models for speaker diarization.

PyDiar This repo contains simple to use, pretrained/training-less models for speaker diarization. Supported Models Binary Key Speaker Modeling Based o

12 Jan 20, 2022
Bu Chatbot, Konya Bilim Merkezi Yen için tasarlanmış olan bir projedir.

chatbot Bu Chatbot, Konya Bilim Merkezi Yeni Ufuklar Sergisi için 2021 Yılında tasarlanmış olan bir projedir. Chatbot Python ortamında yazılmıştır. Sö

Emre Özkul 1 Feb 23, 2022
Python library for parsing resumes using natural language processing and machine learning

CVParser Python library for parsing resumes using natural language processing and machine learning. Setup Installation on Linux and Mac OS Follow the

nafiu 0 Jul 29, 2021