Chinese named entity recognization (bert/roberta/macbert/bert_wwm with Keras)

Overview

Chinese named entity recognization (bert/roberta/macbert/bert_wwm with Keras)

Project Structure

./
├── DataProcess
│   ├── __pycache__
│   ├── convert2bio.py
│   ├── convert_jsonl.py
│   ├── handle_numbers.py
│   ├── load_data.py
│   └── statistic.py
├── README.md
├── __pycache__
├── chinese_L-12_H-768_A-12                                    BERT权重
│   ├── bert_config.json
│   ├── bert_model.ckpt.data-00000-of-00001
│   ├── bert_model.ckpt.index
│   ├── bert_model.ckpt.meta
│   └── vocab.txt
├── chinese_bert_wwm                                           BERT_wwm权重
│   ├── bert_config.json
│   ├── bert_model.ckpt.data-00000-of-00001
│   ├── bert_model.ckpt.index
│   ├── bert_model.ckpt.meta
│   └── vocab.txt
├── chinese_macbert_base                                       macBERT权重
│   ├── chinese_macbert_base.ckpt.data-00000-of-00001
│   ├── chinese_macbert_base.ckpt.index
│   ├── chinese_macbert_base.ckpt.meta
│   ├── macbert_base_config.json
│   └── vocab.txt
├── chinese_roberta_wwm_ext_L-12_H-768_A-12                    roberta权重
│   ├── bert_config.json
│   ├── bert_model.ckpt.data-00000-of-00001
│   ├── bert_model.ckpt.index
│   ├── bert_model.ckpt.meta
│   └── vocab.txt
├── config                                                     
│   ├── __pycache__
│   ├── config.py                                              配置文件
│   └── pulmonary_label2id.json                                label id
├── data                                                       数据集
│   ├── pulmonary.test
│   ├── pulmonary.train
│   └── sict_train.txt
├── environment.yaml                                           conda环境配置文件
├── evaluate.py
├── generator_train.py
├── keras_bert                                                 keras_bert(可pip下)
├── keras_contrib                                              keras_contrib(可pip下)
├── log                                                        训练nohup日志
│   ├── chinese_L-12_H-768_A-12.out
│   ├── chinese_macbert_base.out
│   ├── chinese_roberta_wwm_ext_L-12_H-768_A-12.out
│   └── electra_180g_base.out
├── model.py                                                   模型构建文件
├── models                                                     保存的模型权重
│   ├── pulmonary_chinese_L-12_H-768_A-12_ner.h5
│   ├── pulmonary_chinese_bert_wwm_ner.h5
│   ├── pulmonary_chinese_macbert_base_ner.h5
│   └── pulmonary_chinese_roberta_wwm_ext_L-12_H-768_A-12_ner.h5
├── predict.py                                                 预测
├── report                                                     模型实体F1评估报告
│   ├── pulmonary_chinese_L-12_H-768_A-12_evaluate.txt
│   ├── pulmonary_chinese_L-12_H-768_A-12_predict.json
│   ├── pulmonary_chinese_bert_wwm_evaluate.txt
│   ├── pulmonary_chinese_bert_wwm_predict.json
│   ├── pulmonary_chinese_macbert_base_evaluate.txt
│   ├── pulmonary_chinese_macbert_base_predict.json
│   ├── pulmonary_chinese_roberta_wwm_ext_L-12_H-768_A-12_evaluate.txt
│   └── pulmonary_chinese_roberta_wwm_ext_L-12_H-768_A-12_predict.json
├── requirements.txt                                           pip环境
├── test.py                                                    
├── train.py                                                   训练
└── utils                                                      
    ├── FGM.py                                                 FGM对抗
    ├── __pycache__
    └── path.py                                                所有路径

56 directories, 193 files

Dataset

三甲医院肺结节数据集,20000+字,BIO格式,形如:

中	B-ORG
共	I-ORG
中	I-ORG
央	I-ORG
致	O
中	B-ORG
国	I-ORG
致	I-ORG
公	I-ORG
党	I-ORG
十	I-ORG
一	I-ORG
大	I-ORG
的	O
贺	O
词	O

ATTENTION: 在处理自己数据集的时候需要注意:

  • 字与标签之间用空格("\ ")隔开
  • 其中句子与句子之间使用空行隔开

Steps

  1. 替换数据集
  2. 使用DataProcess/load_data.py生成label2id.txt文件
  3. 修改config/config.py中的MAX_SEQ_LEN(超过截断,少于填充,最好设置训练集、测试集中最长句子作为MAX_SEQ_LEN)
  4. 下载权重,放到项目中
  5. 修改public/path.py中的地址
  6. 根据需要修改model.py模型结构
  7. 修改config/config.py的参数
  8. 训练前debug看下input_train_labels,result_train对不对,input_train_types全是0
  9. 训练

Model

BERT

roberta

macBERT

BERT_wwm

Train

运行train.py

Evaluate

运行evaluate/f1_score.py

BERT

           precision    recall  f1-score   support

     SIGN     0.6651    0.7354    0.6985       189
  ANATOMY     0.8333    0.8409    0.8371       220
 DIAMETER     1.0000    1.0000    1.0000        16
  DISEASE     0.4915    0.6744    0.5686        43
 QUANTITY     0.8837    0.9157    0.8994        83
TREATMENT     0.3571    0.5556    0.4348         9
  DENSITY     1.0000    1.0000    1.0000         8
    ORGAN     0.4500    0.6923    0.5455        13
LUNGFIELD     1.0000    0.5000    0.6667         6
    SHAPE     0.5714    0.5714    0.5714         7
   NATURE     1.0000    1.0000    1.0000         6
 BOUNDARY     1.0000    0.6250    0.7692         8
   MARGIN     0.8333    0.8333    0.8333         6
  TEXTURE     1.0000    0.8571    0.9231         7

micro avg     0.7436    0.7987    0.7702       621
macro avg     0.7610    0.7987    0.7760       621

roberta

           precision    recall  f1-score   support

  ANATOMY     0.8624    0.8545    0.8584       220
  DENSITY     0.8000    1.0000    0.8889         8
     SIGN     0.7347    0.7619    0.7481       189
 QUANTITY     0.8977    0.9518    0.9240        83
  DISEASE     0.5690    0.7674    0.6535        43
 DIAMETER     1.0000    1.0000    1.0000        16
TREATMENT     0.3333    0.5556    0.4167         9
 BOUNDARY     1.0000    0.6250    0.7692         8
LUNGFIELD     1.0000    0.6667    0.8000         6
   MARGIN     0.8333    0.8333    0.8333         6
  TEXTURE     1.0000    0.8571    0.9231         7
    SHAPE     0.5714    0.5714    0.5714         7
   NATURE     1.0000    1.0000    1.0000         6
    ORGAN     0.6250    0.7692    0.6897        13

micro avg     0.7880    0.8261    0.8066       621
macro avg     0.8005    0.8261    0.8104       621

macBERT

           precision    recall  f1-score   support

  ANATOMY     0.8773    0.8773    0.8773       220
     SIGN     0.6538    0.7196    0.6851       189
  DISEASE     0.5893    0.7674    0.6667        43
 QUANTITY     0.9070    0.9398    0.9231        83
    ORGAN     0.5882    0.7692    0.6667        13
  TEXTURE     1.0000    0.8571    0.9231         7
 DIAMETER     1.0000    1.0000    1.0000        16
TREATMENT     0.3750    0.6667    0.4800         9
LUNGFIELD     1.0000    0.5000    0.6667         6
    SHAPE     0.4286    0.4286    0.4286         7
   NATURE     1.0000    1.0000    1.0000         6
  DENSITY     1.0000    1.0000    1.0000         8
 BOUNDARY     1.0000    0.6250    0.7692         8
   MARGIN     0.8333    0.8333    0.8333         6

micro avg     0.7697    0.8180    0.7931       621
macro avg     0.7846    0.8180    0.7977       621

BERT_wwm

           precision    recall  f1-score   support

  DISEASE     0.5667    0.7907    0.6602        43
  ANATOMY     0.8676    0.8636    0.8656       220
 QUANTITY     0.8966    0.9398    0.9176        83
     SIGN     0.7358    0.7513    0.7435       189
LUNGFIELD     1.0000    0.6667    0.8000         6
TREATMENT     0.3571    0.5556    0.4348         9
 DIAMETER     0.9375    0.9375    0.9375        16
 BOUNDARY     1.0000    0.6250    0.7692         8
  TEXTURE     1.0000    0.8571    0.9231         7
   MARGIN     0.8333    0.8333    0.8333         6
    ORGAN     0.5882    0.7692    0.6667        13
  DENSITY     1.0000    1.0000    1.0000         8
   NATURE     1.0000    1.0000    1.0000         6
    SHAPE     0.5000    0.5714    0.5333         7

micro avg     0.7889    0.8245    0.8063       621
macro avg     0.8020    0.8245    0.8104       621

Predict

运行predict/predict_bio.py

Journey is a NLP-Powered Developer assistant

Journey Journey is a NLP-Powered Developer assistant Using on the powerful Natural Language Processing library Mindmeld, this projects aims to assist

Christian Eilers 21 Dec 11, 2022
Neural-Machine-Translation - Implementation of revolutionary machine translation models

Neural Machine Translation Framework: PyTorch Repository contaning my implementa

Utkarsh Jain 1 Feb 17, 2022
Code for Text Prior Guided Scene Text Image Super-Resolution

Code for Text Prior Guided Scene Text Image Super-Resolution

82 Dec 26, 2022
Script to download some free japanese lessons in portuguse from NHK

Nihongo_nhk This is a script to download some free japanese lessons in portuguese from NHK. It can be executed by installing the packages with: pip in

Matheus Alves 2 Jan 06, 2022
Test finetuning of XLSR (multilingual wav2vec 2.0) for other speech classification tasks

wav2vec_finetune Test finetuning of XLSR (multilingual wav2vec 2.0) for other speech classification tasks Initial test: gender recognition on this dat

8 Aug 11, 2022
A programming language with logic of Python, and syntax of all languages.

Pytov The idea was to take all well known syntaxes, and combine them into one programming language with many posabilities. Installation Install using

Yuval Rosen 14 Dec 07, 2022
CYGNUS, the Cynical AI, combines snarky responses with uncanny aggression.

New & (hopefully) Improved CYGNUS with several API updates, user updates, and online/offline operations added!!!

Simran Farrukh 0 Mar 28, 2022
Sequence-to-Sequence learning using PyTorch

Seq2Seq in PyTorch This is a complete suite for training sequence-to-sequence models in PyTorch. It consists of several models and code to both train

Elad Hoffer 514 Nov 17, 2022
Python bot created with Selenium that can guess the daily Wordle word correct 96.8% of the time.

Wordle_Bot Python bot created with Selenium that can guess the daily Wordle word correct 96.8% of the time. It will log onto the wordle website and en

Lucas Polidori 15 Dec 11, 2022
Beautiful visualizations of how language differs among document types.

Scattertext 0.1.0.0 A tool for finding distinguishing terms in corpora and displaying them in an interactive HTML scatter plot. Points corresponding t

Jason S. Kessler 2k Dec 27, 2022
Open source annotation tool for machine learning practitioners.

doccano doccano is an open source text annotation tool for humans. It provides annotation features for text classification, sequence labeling and sequ

7.1k Jan 01, 2023
A full spaCy pipeline and models for scientific/biomedical documents.

This repository contains custom pipes and models related to using spaCy for scientific documents. In particular, there is a custom tokenizer that adds

AI2 1.3k Jan 03, 2023
PeCo: Perceptual Codebook for BERT Pre-training of Vision Transformers

PeCo: Perceptual Codebook for BERT Pre-training of Vision Transformers

Microsoft 105 Jan 08, 2022
Translate - a PyTorch Language Library

NOTE PyTorch Translate is now deprecated, please use fairseq instead. Translate - a PyTorch Language Library Translate is a library for machine transl

775 Dec 24, 2022
NVDA, the free and open source Screen Reader for Microsoft Windows

NVDA NVDA (NonVisual Desktop Access) is a free, open source screen reader for Microsoft Windows. It is developed by NV Access in collaboration with a

NV Access 1.6k Jan 07, 2023
Kerberoast with ACL abuse capabilities

targetedKerberoast targetedKerberoast is a Python script that can, like many others (e.g. GetUserSPNs.py), print "kerberoast" hashes for user accounts

Shutdown 213 Dec 22, 2022
Text classification on IMDB dataset using Keras and Bi-LSTM network

Text classification on IMDB dataset using Keras and Bi-LSTM Text classification on IMDB dataset using Keras and Bi-LSTM network. Usage python3 main.py

Hamza Rashid 2 Sep 27, 2022
A Facebook Messenger Chatbot using NLP

A Facebook Messenger Chatbot using NLP This project is about creating a messenger chatbot using basic NLP techniques and models like Logistic Regressi

6 Nov 20, 2022
AEC_DeepModel - Deep learning based acoustic echo cancellation baseline code

AEC_DeepModel - Deep learning based acoustic echo cancellation baseline code

凌逆战 75 Dec 05, 2022
Code to reproduce the results of the paper 'Towards Realistic Few-Shot Relation Extraction' (EMNLP 2021)

Realistic Few-Shot Relation Extraction This repository contains code to reproduce the results in the paper "Towards Realistic Few-Shot Relation Extrac

Bloomberg 8 Nov 09, 2022