Code to reproduce the results of the paper 'Towards Realistic Few-Shot Relation Extraction' (EMNLP 2021)

Overview

Realistic Few-Shot Relation Extraction

This repository contains code to reproduce the results in the paper "Towards Realistic Few-Shot Relation Extraction" to appear in The 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP 2021). This code is not intended to be modified or reused. It is a fork of an existing FewRel repository with some modifications.

Fine-tuning

The following command is to fine-tune a pre-trained model on a training dataset complying with the FewRel's format (see the Dataset section below).

python -m fewrel.fewrel_eval \
  --train train_wiki \
  --test val_wiki \
  --encoder {"cnn", "bert", "roberta", "luke"} \
  --pool {"cls", "cat_entity_reps"} \
  --data_root data/fewrel \
  --pretrain_ckpt {pretrained_model_path} \
  --train_iter 10000 \
  --val_iter 1000 \
  --val_step 2000 \
  --test_iter 2000

The above command will dump the fine-tuned model under ./checkpoint. The following command can be used to get the overall accuracy for the fine-tuned model.

Overall accuracy

python -m fewrel.fewrel_eval \
  --only_test \
  --test val_wiki \
  --encoder {"cnn", "bert", "roberta", "luke"} \
  --pool {"cls", "cat_entity_reps"} \
  --data_root data/fewrel \
  --pretrain_ckpt {pretrained_model_path} \ # needed for getting model config
  --load_ckpt {trained_checkpoint_path} \
  --test_iter 2000

[email protected] for individual relations

Precision at 50 can be calculated using the following command

python -m fewrel.alt_eval \
  --test {test_file_name_without_extension} \ # e.g., tacred_org 
  --encoder {"cnn", "bert", "roberta", "luke"} \
  --pool {"cls", "cat_entity_reps"} \
  --data_root {path_to_data_folder} \
  --pretrain_ckpt {pretrained_model_path} \ # needed for getting model config
  --load_ckpt {trained_checkpoint_path}

Pre-trained models

In this work, several encoders are experimented with including CNN, BERT, SpanBERT, RoBERTa-base, RoBERTa-large, and LUKE-base. Most pre-trained models can be downloaded from Hugging Face Transformers, and LUKE-base can be downloaded from its original GitHub repository.

Note: the original LUKE code depends on an older version of HuggingFace Transformers, which is not compatible with the version used in this repository. To experiment with LUKE, please run script ./checkout_out_luke.sh. This will first clone the original LUKE repository, apply the necessary changes to make luke compatible with this repo, and move the LUKE module to the correct place to make sure the code runs correctly.

Dataset

The original FewRel dataset has already be contained in the github repo (here)[./data/fewrel]. To convert other dataset (e.g., TACRED) to the FewRel format, one could use ./scripts/prep_more_data.py.

./scripts/select_rel.py is a script to augment an existing dataset with relations from another dataset. For example, to add a list of relations from dataset source.json to destination.json and dump the merged dataset to a file output.json, one can use the following command:

python scripts/select_rel.py add_rel \
  --src source.json \
  --dst destination.json \
  --output output.json \
  --rels {relations_delimitated_by_space}
Owner
Bloomberg
Bloomberg
A flask application to predict the speech emotion of any .wav file.

This is a speech emotion recognition app. It will allow you to train a modular MLP model with the RAVDESS dataset, and then use that model with a flask application to predict the speech emotion of an

Aryan Vijaywargia 2 Dec 15, 2021
DaCy: The State of the Art Danish NLP pipeline using SpaCy

DaCy: A SpaCy NLP Pipeline for Danish DaCy is a Danish preprocessing pipeline trained in SpaCy. At the time of writing it has achieved State-of-the-Ar

Kenneth Enevoldsen 71 Jan 06, 2023
Winner system (DAMO-NLP) of SemEval 2022 MultiCoNER shared task over 10 out of 13 tracks.

KB-NER: a Knowledge-based System for Multilingual Complex Named Entity Recognition The code is for the winner system (DAMO-NLP) of SemEval 2022 MultiC

116 Dec 27, 2022
DeLighT: Very Deep and Light-Weight Transformers

DeLighT: Very Deep and Light-weight Transformers This repository contains the source code of our work on building efficient sequence models: DeFINE (I

Sachin Mehta 440 Dec 18, 2022
Training open neural machine translation models

Train Opus-MT models This package includes scripts for training NMT models using MarianNMT and OPUS data for OPUS-MT. More details are given in the Ma

Language Technology at the University of Helsinki 167 Jan 03, 2023
Protein Language Model

ProteinLM We pretrain protein language model based on Megatron-LM framework, and then evaluate the pretrained model results on TAPE (Tasks Assessing P

THUDM 77 Dec 27, 2022
State of the art faster Natural Language Processing in Tensorflow 2.0 .

tf-transformers: faster and easier state-of-the-art NLP in TensorFlow 2.0 ****************************************************************************

74 Dec 05, 2022
Pytorch implementation of Tacotron

Tacotron-pytorch A pytorch implementation of Tacotron: A Fully End-to-End Text-To-Speech Synthesis Model. Requirements Install python 3 Install pytorc

soobin seo 203 Dec 02, 2022
A method for cleaning and classifying text using transformers.

NLP Translation and Classification The repository contains a method for classifying and cleaning text using NLP transformers. Overview The input data

Ray Chamidullin 0 Nov 15, 2022
Text editor on python tkinter to convert english text to other languages with the help of ployglot.

Transliterator Text Editor This is a simple transliteration program which is used to convert english word to phonetically matching word in another lan

Merin Rose Tom 1 Jan 16, 2022
2021语言与智能技术竞赛:机器阅读理解任务

LICS2021 MRC 1. 项目&任务介绍 本项目基于官方给定的baseline(DuReader-Checklist-BASELINE)进行二次改造,对整个代码框架做了简单的重构,对核心网络结构添加了注释,解耦了数据读取的模块,并添加了阈值确认的功能,一些小的细节也做了改进。 本次任务为202

roar 29 Dec 05, 2022
An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition

CRNN paper:An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition 1. create your ow

Tsukinousag1 3 Apr 02, 2022
This repository will contain the code for the CVPR 2021 paper "GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields"

GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields Project Page | Paper | Supplementary | Video | Slides | Blog | Talk If

1.1k Dec 27, 2022
NLPIR tutorial: pretrain for IR. pre-train on raw textual corpus, fine-tune on MS MARCO Document Ranking

pretrain4ir_tutorial NLPIR tutorial: pretrain for IR. pre-train on raw textual corpus, fine-tune on MS MARCO Document Ranking 用作NLPIR实验室, Pre-training

ZYMa 12 Apr 07, 2022
Levenshtein and Hamming distance computation

distance - Utilities for comparing sequences This package provides helpers for computing similarities between arbitrary sequences. Included metrics ar

112 Dec 22, 2022
基于GRU网络的句子判断程序/A program based on GRU network for judging sentences

SentencesJudger SentencesJudger 是一个基于GRU神经网络的句子判断程序,基本的功能是判断文章中的某一句话是否为一个优美的句子。 English 如何使用SentencesJudger 确认Python运行环境 安装pyTorch与LTP python3 -m pip

8 Mar 24, 2022
2021 2학기 데이터크롤링 기말프로젝트

공지 주제 웹 크롤링을 이용한 취업 공고 스케줄러 스케줄 주제 정하기 코딩하기 핵심 코드 설명 + 피피티 구조 구상 // 12/4 토 피피티 + 스크립트(대본) 제작 + 녹화 // ~ 12/10 ~ 12/11 금~토 영상 편집 // ~12/11 토 웹크롤러 사람인_평균

Choi Eun Jeong 2 Aug 16, 2022
Ray-based parallel data preprocessing for NLP and ML.

Wrangl Ray-based parallel data preprocessing for NLP and ML. pip install wrangl # for latest pip install git+https://github.com/vzhong/wrangl See exa

Victor Zhong 33 Dec 27, 2022
Just a Basic like Language for Zeno INC

zeno-basic-language Just a Basic like Language for Zeno INC This is written in 100% python. this is basic language like language. so its not for big p

Voidy Devleoper 1 Dec 18, 2021
A cross platform OCR Library based on PaddleOCR & OnnxRuntime

A cross platform OCR Library based on PaddleOCR & OnnxRuntime

RapidOCR Team 767 Jan 09, 2023