NLPIR tutorial: pretrain for IR. pre-train on raw textual corpus, fine-tune on MS MARCO Document Ranking

Overview

pretrain4ir_tutorial

NLPIR tutorial: pretrain for IR. pre-train on raw textual corpus, fine-tune on MS MARCO Document Ranking

用作NLPIR实验室, Pre-training for IR方向入门.

代码包括了如下部分:

  • tasks/ : 生成预训练数据
  • pretrain/: 在生成的数据上Pre-training (MLM + NSP)
  • finetune/: Fine-tuning on MS MARCO

Preinstallation

First, prepare a Python3 environment, and run the following commands:

  git clone [email protected]:zhengyima/pretrain4ir_tutorial.git pretrain4ir_tutorial
  cd pretrain4ir_tutorial
  pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple

Besides, you should download the BERT model checkpoint in format of huggingface transformers, and save them in a directory BERT_MODEL_PATH. In our paper, we use the version of bert-base-uncased. you can download it from the huggingface official model zoo, or Tsinghua mirror.

生成预训练数据

代码库提供了最简单易懂的预训练任务 rand。该任务随机从文档中选取1~5个词作为query, 用来demo面向IR的预训练。

生成rand预训练任务数据命令: cd tasks/rand && bash gen.sh

你可以自己编写脚本, 仿照rand任务, 生成你自己认为合理的预训练任务的数据。

Notes: 运行rand任务的shell之前, 你需要先将 gen.sh 脚本中的 msmarco_docs_path 参数改为MSMARCO数据集的 文档tsv 路径; 将bert_model参数改为下载好的bert模型目录;

模型预训练

代码库提供了模型预训练的相关代码, 见pretrain。该代码完成了MLM+NSP两个任务的预训练。

模型预训练命令: cd pretrain && bash train_bert.sh

Notes: 注意要修改train_bert中的相应参数:将bert_model参数改为下载好的bert模型目录; train_file改为你上一步生成好的预训练数据文件路径。

模型Fine-tune

代码库提供了在MSMARCO Document Ranking任务上进行Fine-tune的相关代码。见finetune。该代码完成了在MSMARCO上通过point-wise进行fine-tune的流程。

模型fine-tune命令: cd finetune && bash train_bert.sh

Leaderboard

Tasks [email protected] on dev set
PROP-MARCO 0.4201
PROP-WIKI 0.4188
BERT-Base 0.4184
rand 0.4123

Homework

设计一个你认为合理的预训练任务, 并对BERT模型进行预训练, 并在MSMARCO上完成fine-tune, 在Leaderboard上更新你在dev set上的结果。

你需要做的是:

  • 编写你自己的预训练数据生成脚本, 放到 tasks/yourtask 目录下。
  • 使用以上脚本, 生成自己的预训练数据。
  • 运行代码库提供的pre-train与fine-tune脚本, 跑出结果, 更新Leaderboard。

Links

Owner
ZYMa
Master candidate. IR and NLP.
ZYMa
CCQA A New Web-Scale Question Answering Dataset for Model Pre-Training

CCQA: A New Web-Scale Question Answering Dataset for Model Pre-Training This is the official repository for the code and models of the paper CCQA: A N

Meta Research 29 Nov 30, 2022
💫 Industrial-strength Natural Language Processing (NLP) in Python

spaCy: Industrial-strength NLP spaCy is a library for advanced Natural Language Processing in Python and Cython. It's built on the very latest researc

Explosion 24.9k Jan 02, 2023
This repository is home to the Optimus data transformation plugins for various data processing needs.

Transformers Optimus's transformation plugins are implementations of Task and Hook interfaces that allows execution of arbitrary jobs in optimus. To i

Open Data Platform 37 Dec 14, 2022
This is the Alpha of Nutte language, she is not complete yet / Essa é a Alpha da Nutte language, não está completa ainda

nutte-language This is the Alpha of Nutte language, it is not complete yet / Essa é a Alpha da Nutte language, não está completa ainda My language was

catdochrome 2 Dec 18, 2021
Tokenizer - Module python d'analyse syntaxique et de grammaire, tokenization

Tokenizer Le Tokenizer est un analyseur lexicale, il permet, comme Flex and Yacc par exemple, de tokenizer du code, c'est à dire transformer du code e

Manolo 1 Aug 15, 2022
Application to help find best train itinerary, uses speech to text, has a spam filter to segregate invalid inputs, NLP and Pathfinding algos.

T-IAI-901-MSC2022 - GROUP 18 Gestion de projet Notre travail a été organisé et réparti dans un Trello. https://trello.com/b/X3s2fpPJ/ia-projet Install

1 Feb 05, 2022
A workshop with several modules to help learn Feast, an open-source feature store

Workshop: Learning Feast This workshop aims to teach users about Feast, an open-source feature store. We explain concepts & best practices by example,

Feast 52 Jan 05, 2023
Intent parsing and slot filling in PyTorch with seq2seq + attention

PyTorch Seq2Seq Intent Parsing Reframing intent parsing as a human - machine translation task. Work in progress successor to torch-seq2seq-intent-pars

Sean Robertson 159 Apr 04, 2022
Pytorch implementation of winner from VQA Chllange Workshop in CVPR'17

2017 VQA Challenge Winner (CVPR'17 Workshop) pytorch implementation of Tips and Tricks for Visual Question Answering: Learnings from the 2017 Challeng

Mark Dong 166 Dec 11, 2022
Ongoing research training transformer language models at scale, including: BERT & GPT-2

Megatron (1 and 2) is a large, powerful transformer developed by the Applied Deep Learning Research team at NVIDIA.

NVIDIA Corporation 3.5k Dec 30, 2022
The Easy-to-use Dialogue Response Selection Toolkit for Researchers

The Easy-to-use Dialogue Response Selection Toolkit for Researchers

GMFTBY 32 Nov 13, 2022
Quick insights from Zoom meeting transcripts using Graph + NLP

Transcript Analysis - Graph + NLP This program extracts insights from Zoom Meeting Transcripts (.vtt) using TigerGraph and NLTK. In order to run this

Advit Deepak 7 Sep 17, 2022
Score-Based Point Cloud Denoising (ICCV'21)

Score-Based Point Cloud Denoising (ICCV'21) [Paper] https://arxiv.org/abs/2107.10981 Installation Recommended Environment The code has been tested in

Shitong Luo 79 Dec 26, 2022
🤕 spelling exceptions builder for lazy people

🤕 spelling exceptions builder for lazy people

Vlad Bokov 3 May 12, 2022
Trex is a tool to match semantically similar functions based on transfer learning.

Trex is a tool to match semantically similar functions based on transfer learning.

62 Dec 28, 2022
🐍 A hyper-fast Python module for reading/writing JSON data using Rust's serde-json.

A hyper-fast, safe Python module to read and write JSON data. Works as a drop-in replacement for Python's built-in json module. This is alpha software

Matthias 479 Jan 01, 2023
This is a really simple text-to-speech app made with python and tkinter.

Tkinter Text-to-Speech App by Souvik Roy This is a really simple tkinter app which converts the text you have entered into a speech. It is created wit

Souvik Roy 1 Dec 21, 2021
[AAAI 21] Curriculum Labeling: Revisiting Pseudo-Labeling for Semi-Supervised Learning

◥ Curriculum Labeling ◣ Revisiting Pseudo-Labeling for Semi-Supervised Learning Paola Cascante-Bonilla, Fuwen Tan, Yanjun Qi, Vicente Ordonez. In the

UVA Computer Vision 113 Dec 15, 2022
Huggingface Transformers + Adapters = ❤️

adapter-transformers A friendly fork of HuggingFace's Transformers, adding Adapters to PyTorch language models adapter-transformers is an extension of

AdapterHub 1.2k Jan 09, 2023
Trankit is a Light-Weight Transformer-based Python Toolkit for Multilingual Natural Language Processing

Trankit: A Light-Weight Transformer-based Python Toolkit for Multilingual Natural Language Processing Trankit is a light-weight Transformer-based Pyth

652 Jan 06, 2023