InferSent sentence embeddings

Overview

InferSent

InferSent is a sentence embeddings method that provides semantic representations for English sentences. It is trained on natural language inference data and generalizes well to many different tasks.

We provide our pre-trained English sentence encoder from our paper and our SentEval evaluation toolkit.

Recent changes: Removed train_nli.py and only kept pretrained models for simplicity. Reason is I do not have time anymore to maintain the repo beyond simple scripts to get sentence embeddings.

Dependencies

This code is written in python. Dependencies include:

  • Python 2/3
  • Pytorch (recent version)
  • NLTK >= 3

Download word vectors

Download GloVe (V1) or fastText (V2) vectors:

mkdir GloVe
curl -Lo GloVe/glove.840B.300d.zip http://nlp.stanford.edu/data/glove.840B.300d.zip
unzip GloVe/glove.840B.300d.zip -d GloVe/
mkdir fastText
curl -Lo fastText/crawl-300d-2M.vec.zip https://dl.fbaipublicfiles.com/fasttext/vectors-english/crawl-300d-2M.vec.zip
unzip fastText/crawl-300d-2M.vec.zip -d fastText/

Use our sentence encoder

We provide a simple interface to encode English sentences. See demo.ipynb for a practical example. Get started with the following steps:

0.0) Download our InferSent models (V1 trained with GloVe, V2 trained with fastText)[147MB]:

mkdir encoder
curl -Lo encoder/infersent1.pkl https://dl.fbaipublicfiles.com/infersent/infersent1.pkl
curl -Lo encoder/infersent2.pkl https://dl.fbaipublicfiles.com/infersent/infersent2.pkl

Note that infersent1 is trained with GloVe (which have been trained on text preprocessed with the PTB tokenizer) and infersent2 is trained with fastText (which have been trained on text preprocessed with the MOSES tokenizer). The latter also removes the padding of zeros with max-pooling which was inconvenient when embedding sentences outside of their batches.

0.1) Make sure you have the NLTK tokenizer by running the following once:

import nltk
nltk.download('punkt')

1) Load our pre-trained model (in encoder/):

from models import InferSent
V = 2
MODEL_PATH = 'encoder/infersent%s.pkl' % V
params_model = {'bsize': 64, 'word_emb_dim': 300, 'enc_lstm_dim': 2048,
                'pool_type': 'max', 'dpout_model': 0.0, 'version': V}
infersent = InferSent(params_model)
infersent.load_state_dict(torch.load(MODEL_PATH))

2) Set word vector path for the model:

W2V_PATH = 'fastText/crawl-300d-2M.vec'
infersent.set_w2v_path(W2V_PATH)

3) Build the vocabulary of word vectors (i.e keep only those needed):

infersent.build_vocab(sentences, tokenize=True)

where sentences is your list of n sentences. You can update your vocabulary using infersent.update_vocab(sentences), or directly load the K most common English words with infersent.build_vocab_k_words(K=100000). If tokenize is True (by default), sentences will be tokenized using NTLK.

4) Encode your sentences (list of n sentences):

embeddings = infersent.encode(sentences, tokenize=True)

This outputs a numpy array with n vectors of dimension 4096. Speed is around 1000 sentences per second with batch size 128 on a single GPU.

5) Visualize the importance that our model attributes to each word:

We provide a function to visualize the importance of each word in the encoding of a sentence:

infersent.visualize('A man plays an instrument.', tokenize=True)

Model

Evaluate the encoder on transfer tasks

To evaluate the model on transfer tasks, see SentEval. Be mindful to choose the same tokenization used for training the encoder. You should obtain the following test results for the baselines and the InferSent models:

Model MR CR SUBJ MPQA STS14 STS Benchmark SICK Relatedness SICK Entailment SST TREC MRPC
InferSent1 81.1 86.3 92.4 90.2 .68/.65 75.8/75.5 0.884 86.1 84.6 88.2 76.2/83.1
InferSent2 79.7 84.2 92.7 89.4 .68/.66 78.4/78.4 0.888 86.3 84.3 90.8 76.0/83.8
SkipThought 79.4 83.1 93.7 89.3 .44/.45 72.1/70.2 0.858 79.5 82.9 88.4 -
fastText-BoV 78.2 80.2 91.8 88.0 .65/.63 70.2/68.3 0.823 78.9 82.3 83.4 74.4/82.4

Reference

Please consider citing [1] if you found this code useful.

Supervised Learning of Universal Sentence Representations from Natural Language Inference Data (EMNLP 2017)

[1] A. Conneau, D. Kiela, H. Schwenk, L. Barrault, A. Bordes, Supervised Learning of Universal Sentence Representations from Natural Language Inference Data

@InProceedings{conneau-EtAl:2017:EMNLP2017,
  author    = {Conneau, Alexis  and  Kiela, Douwe  and  Schwenk, Holger  and  Barrault, Lo\"{i}c  and  Bordes, Antoine},
  title     = {Supervised Learning of Universal Sentence Representations from Natural Language Inference Data},
  booktitle = {Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing},
  month     = {September},
  year      = {2017},
  address   = {Copenhagen, Denmark},
  publisher = {Association for Computational Linguistics},
  pages     = {670--680},
  url       = {https://www.aclweb.org/anthology/D17-1070}
}

Related work

Owner
Facebook Research
Facebook Research
Deep Learning for Natural Language Processing - Lectures 2021

This repository contains slides for the course "20-00-0947: Deep Learning for Natural Language Processing" (Technical University of Darmstadt, Summer term 2021).

0 Feb 21, 2022
skweak: A software toolkit for weak supervision applied to NLP tasks

Labelled data remains a scarce resource in many practical NLP scenarios. This is especially the case when working with resource-poor languages (or text domains), or when using task-specific labels wi

Norsk Regnesentral (Norwegian Computing Center) 850 Dec 28, 2022
spaCy-wrap: For Wrapping fine-tuned transformers in spaCy pipelines

spaCy-wrap: For Wrapping fine-tuned transformers in spaCy pipelines spaCy-wrap is minimal library intended for wrapping fine-tuned transformers from t

Kenneth Enevoldsen 32 Dec 29, 2022
🏖 Easy training and deployment of seq2seq models.

Headliner Headliner is a sequence modeling library that eases the training and in particular, the deployment of custom sequence models for both resear

Axel Springer Ideas Engineering GmbH 231 Nov 18, 2022
a CTF web challenge about making screenshots

screenshotter (web) A CTF web challenge about making screenshots. It is inspired by a bug found in real life. The challenge was created by @LiveOverfl

219 Jan 02, 2023
SGMC: Spectral Graph Matrix Completion

SGMC: Spectral Graph Matrix Completion Code for AAAI21 paper "Scalable and Explainable 1-Bit Matrix Completion via Graph Signal Learning". Data Format

Chao Chen 8 Dec 12, 2022
Modeling cumulative cases of Covid-19 in the US during the Covid 19 Delta wave using Bayesian methods.

Introduction The goal of this analysis is to find a model that fits the observed cumulative cases of COVID-19 in the US, starting in Mid-July 2021 and

Alexander Keeney 1 Jan 05, 2022
End-2-end speech synthesis with recurrent neural networks

Introduction New: Interactive demo using Google Colaboratory can be found here TTS-Cube is an end-2-end speech synthesis system that provides a full p

Tiberiu Boros 214 Dec 07, 2022
Data preprocessing rosetta parser for python

datapreprocessing_rosetta_parser I've never done any NLP or text data processing before, so I wanted to use this hackathon as a learning opportunity,

ASReview hackathon for Follow the Money 2 Nov 28, 2021
List of GSoC organisations with number of times they have been selected.

Welcome to GSoC Organisation Frequency And Details 👋 List of GSoC organisations with number of times they have been selected, techonologies, topics,

Shivam Kumar Jha 41 Oct 01, 2022
Deep Learning Topics with Computer Vision & NLP

Deep learning Udacity Course Deep Learning Topics with Computer Vision & NLP for the AWS Machine Learning Engineer Nanodegree Program Tasks are mostly

Simona Mircheva 1 Jan 20, 2022
Write Alphabet, Words and Sentences with your eyes.

The-Next-Gen-AI-Eye-Writer The Eye tracking Technique has become one of the most popular techniques within the human and computer interaction era, thi

Rohan Kasabe 2 Apr 05, 2022
Code for our paper "Transfer Learning for Sequence Generation: from Single-source to Multi-source" in ACL 2021.

TRICE: a task-agnostic transferring framework for multi-source sequence generation This is the source code of our work Transfer Learning for Sequence

THUNLP-MT 9 Jun 27, 2022
PUA Programming Language written in Python.

pua-lang PUA Programming Language written in Python. Installation git clone https://github.com/zhaoyang97/pua-lang.git cd pua-lang pip install . Try

zy 4 Feb 19, 2022
Extract city and country mentions from Text like GeoText without regex, but FlashText, a Aho-Corasick implementation.

flashgeotext ⚡ 🌍 Extract and count countries and cities (+their synonyms) from text, like GeoText on steroids using FlashText, a Aho-Corasick impleme

Ben 57 Dec 16, 2022
Concept Modeling: Topic Modeling on Images and Text

Concept is a technique that leverages CLIP and BERTopic-based techniques to perform Concept Modeling on images.

Maarten Grootendorst 120 Dec 27, 2022
Data and evaluation code for the paper WikiNEuRal: Combined Neural and Knowledge-based Silver Data Creation for Multilingual NER (EMNLP 2021).

Data and evaluation code for the paper WikiNEuRal: Combined Neural and Knowledge-based Silver Data Creation for Multilingual NER. @inproceedings{tedes

Babelscape 40 Dec 11, 2022
基于pytorch_rnn的古诗词生成

pytorch_peot_rnn 基于pytorch_rnn的古诗词生成 说明 config.py里面含有训练、测试、预测的参数,更改后运行: python main.py 预测结果 if config.do_predict: result = trainer.generate('丽日照残春')

西西嘛呦 3 May 26, 2022
BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese

Table of contents Introduction Using BARTpho with fairseq Using BARTpho with transformers Notes BARTpho: Pre-trained Sequence-to-Sequence Models for V

VinAI Research 58 Dec 23, 2022
Question answering app is used to answer for a user given question from user given text.

Question answering app is used to answer for a user given question from user given text.It is created using HuggingFace's transformer pipeline and streamlit python packages.

Siva Prakash 3 Apr 05, 2022