EMNLP 2021 paper "Pre-train or Annotate? Domain Adaptation with a Constrained Budget".

Overview

Pre-train or Annotate? Domain Adaptation with a Constrained Budget

This repo contains code and data associated with EMNLP 2021 paper "Pre-train or Annotate? Domain Adaptation with a Constrained Budget".

@inproceedings{bai-etal-2021-pre,
    title = "Pre-train or Annotate? Domain Adaptation with a Constrained Budget",
    author = "Bai, Fan  and
              Ritter, Alan  and
              Xu, Wei",
    booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
    month = nov,
    year = "2021",
    address = "Online and Punta Cana, Dominican Republic",
    publisher = "Association for Computational Linguistics",
}

Installment

git clone https://github.com/bflashcp3f/ProcBERT.git
cd ProcBERT
conda env create -f environment.yml
conda activate procbert

Data & Model Checkpoints

Three procedural-text datasets (WLP, PubMed and ChemSyn) can be downloaded here, and model checkpoints (ProcBERT and Proc-RoBERTa) are accessible through HuggingFace.

Experiment

Setup

# After downloading the data, update the DATA_PATH variable in code/utils.py
DATA_PATH=<DATA_PATH>

Budget-aware Domain Adaptation Experiments (with EasyAdapt)

# Named Entity Recognition (NER) 
python code/ner_da_budget.py     \
  --lm_model procbert     \
  --src_data pubmed     \
  --tgt_data chemsyn     \
  --gpu_ids 0,1   \
  --output_dir ./output/da/pubmed_chemsyn     \
  --learning_rate 1e-5     \
  --task_name fa_ner     \
  --batch_size 16     \
  --max_len 512    \
  --epochs 25 \
  --budget 700 \
  --alpha 1   \
  --save_model

# Relation Extraction (RE)
python code/rel_da_budget.py \
  --lm_model procbert \
  --src_data pubmed     \
  --tgt_data chemsyn     \
  --gpu_ids 0,1  \
  --output_dir ./output/da/pubmed_chemsyn \
  --learning_rate 1e-5 \
  --task_name fa_rel \
  --batch_size 48 \
  --max_len 256 \
  --epochs 5 \
  --budget 700 \
  --alpha 1 \
  --down_sample \
  --down_sample_rate 0.4 \
  --save_model

To obtain ProcBERT results with different budgets under six domain adaptation settings:

# NER
sh script/ner/run_ner_da_budget_all.sh

# RE
sh script/rel/run_rel_da_budget_all.sh

Budget-aware Target-domain-only Experiments

# Named Entity Recognition (NER) 
python code/ner_budget.py \
  --lm_model procbert \
  --data_name chemsyn \
  --gpu_ids 0,1  \
  --output_dir ./output/chemsyn \
  --learning_rate 1e-5 \
  --task_name ner \
  --batch_size 16 \
  --max_len 512 \
  --epochs 25 \
  --budget 700 \
  --save_model

# Relation Extraction (RE)
python code/rel_budget.py \
  --lm_model procbert \
  --data_name chemsyn \
  --gpu_ids 0,1  \
  --output_dir ./output/chemsyn \
  --learning_rate 1e-5 \
  --task_name rel \
  --batch_size 48 \
  --max_len 256 \
  --epochs 5 \
  --budget 700 \
  --down_sample \
  --down_sample_rate 0.4 \
  --save_model

To obtain ProcBERT results with different budgets on three datasets:

# NER
sh script/ner/run_ner_budget_all.sh

# RE
sh script/rel/run_rel_budget_all.sh

Auxiliary Experiments

# Named Entity Recognition (NER) 
python code/ner.py \
  --lm_model procbert \
  --data_name chemsyn \
  --gpu_ids 0,1  \
  --output_dir ./output/chemsyn \
  --learning_rate 1e-5 \
  --task_name ner \
  --batch_size 16 \
  --max_len 512 \
  --epochs 20 \
  --save_model

# Relation Extraction (RE)
python code/rel.py \
  --lm_model procbert \
  --data_name chemsyn \
  --gpu_ids 0,1  \
  --output_dir ./output/chemsyn \
  --learning_rate 1e-5 \
  --task_name rel \
  --batch_size 48 \
  --max_len 256 \
  --epochs 5 \
  --down_sample \
  --down_sample_rate 0.4 \
  --save_model

To obtain ProcBERT results on all three datasets:

# NER
sh script/ner/run_ner_all.sh

# RE
sh script/rel/run_rel_all.sh
Owner
Fan Bai
Fan Bai
API for the GPT-J language model 🦜. Including a FastAPI backend and a streamlit frontend

gpt-j-api 🦜 An API to interact with the GPT-J language model. You can use and test the model in two different ways: Streamlit web app at http://api.v

Víctor Gallego 276 Dec 31, 2022
This is a Prototype of an Ai ChatBot "Tea and Coffee Supplier" using python.

Ai-ChatBot-Python A chatbot is an intelligent system which can hold a conversation with a human using natural language in real time. Due to the rise o

1 Oct 30, 2021
结巴中文分词

jieba “结巴”中文分词:做最好的 Python 中文分词组件 "Jieba" (Chinese for "to stutter") Chinese text segmentation: built to be the best Python Chinese word segmentation

Sun Junyi 29.8k Jan 02, 2023
Transformers implementation for Fall 2021 Clinic

Installation Download miniconda3 if not already installed You can check by running typing conda in command prompt. Use conda to create an environment

Aakash Tripathi 1 Oct 28, 2021
PyTorch implementation of the paper: Text is no more Enough! A Benchmark for Profile-based Spoken Language Understanding

Text is no more Enough! A Benchmark for Profile-based Spoken Language Understanding This repository contains the official PyTorch implementation of th

Xiao Xu 26 Dec 14, 2022
A simple recipe for training and inferencing Transformer architecture for Multi-Task Learning on custom datasets. You can find two approaches for achieving this in this repo.

multitask-learning-transformers A simple recipe for training and inferencing Transformer architecture for Multi-Task Learning on custom datasets. You

Shahrukh Khan 48 Jan 02, 2023
This is an incredibly powerful calculator that is capable of many useful day-to-day functions.

Description 💻 This is an incredibly powerful calculator that is capable of many useful day-to-day functions. Such functions include solving basic ari

Jordan Leich 37 Nov 19, 2022
NLP library designed for reproducible experimentation management

Welcome to the Transfer NLP library, a framework built on top of PyTorch to promote reproducible experimentation and Transfer Learning in NLP You can

Feedly 290 Dec 20, 2022
A repository to run gpt-j-6b on low vram machines (4.2 gb minimum vram for 2000 token context, 3.5 gb for 1000 token context). Model loading takes 12gb free ram.

Basic-UI-for-GPT-J-6B-with-low-vram A repository to run GPT-J-6B on low vram systems by using both ram, vram and pinned memory. There seem to be some

90 Dec 25, 2022
Partially offline multi-language translator built upon Huggingface transformers.

Translate Command-line interface to translation pipelines, powered by Huggingface transformers. This tool can download translation models, and then us

Richard Jarry 8 Oct 25, 2022
This is the code for the EMNLP 2021 paper AEDA: An Easier Data Augmentation Technique for Text Classification

The baseline code is for EDA: Easy Data Augmentation techniques for boosting performance on text classification tasks

Akbar Karimi 81 Dec 09, 2022
MASS: Masked Sequence to Sequence Pre-training for Language Generation

MASS: Masked Sequence to Sequence Pre-training for Language Generation

Microsoft 1.1k Dec 17, 2022
Library of deep learning models and datasets designed to make deep learning more accessible and accelerate ML research.

Tensor2Tensor Tensor2Tensor, or T2T for short, is a library of deep learning models and datasets designed to make deep learning more accessible and ac

12.9k Jan 07, 2023
Sentiment Classification using WSD, Maximum Entropy & Naive Bayes Classifiers

Sentiment Classification using WSD, Maximum Entropy & Naive Bayes Classifiers

Pulkit Kathuria 173 Jan 04, 2023
TPlinker for NER 中文/英文命名实体识别

本项目是参考 TPLinker 中HandshakingTagging思想,将TPLinker由原来的关系抽取(RE)模型修改为命名实体识别(NER)模型。

GodK 113 Dec 28, 2022
ChessCoach is a neural network-based chess engine capable of natural-language commentary.

ChessCoach is a neural network-based chess engine capable of natural-language commentary.

Chris Butner 380 Dec 03, 2022
💫 Industrial-strength Natural Language Processing (NLP) in Python

spaCy: Industrial-strength NLP spaCy is a library for advanced Natural Language Processing in Python and Cython. It's built on the very latest researc

Explosion 24.9k Jan 02, 2023
This repository contains the codes for LipGAN. LipGAN was published as a part of the paper titled "Towards Automatic Face-to-Face Translation".

LipGAN Generate realistic talking faces for any human speech and face identity. [Paper] | [Project Page] | [Demonstration Video] Important Update: A n

Rudrabha Mukhopadhyay 438 Dec 31, 2022
Gathers machine learning and Tensorflow deep learning models for NLP problems, 1.13 < Tensorflow < 2.0

NLP-Models-Tensorflow, Gathers machine learning and tensorflow deep learning models for NLP problems, code simplify inside Jupyter Notebooks 100%. Tab

HUSEIN ZOLKEPLI 1.7k Dec 30, 2022
Levenshtein and Hamming distance computation

distance - Utilities for comparing sequences This package provides helpers for computing similarities between arbitrary sequences. Included metrics ar

112 Dec 22, 2022