Text Classification Using LSTM

Overview

Text-Classification-Using-LSTM

Ontology Classification-Using-LSTM

Introduction

Text classification is the task of assigning a set of predefined categories to free text. Text classifiers can be used to organize, structure, and categorize pretty much anything. For example, new articles can be organized by topics, support tickets can be organized by urgency, chat conversations can be organized by language, brand mentions can be organized by sentiment, and so on.

Technologies Used

1. IDE - Pycharm
2. LSTM - As a classification Deep learning Model
3. GPU - P-4000
4. Google Colab - Text Analysis
5. Flas- Fast API
6. Postman - API Tester
7. Gensim - Word2Vec embeddings

🔑 Prerequisites All the dependencies and required libraries are included in the file requirements.txt

  Python 3.6

Dataset

The DBpedia ontology classification dataset is constructed by picking 14 non-overlapping classes from DBpedia 2014. They are listed in classes.txt. From each of thse 14 ontology classes, we randomly choose 40,000 training samples and 5,000 testing samples. Therefore, the total size of the training dataset is 560,000 and testing dataset 70,000. The files train.csv and test.csv contain all the training samples as comma-sparated values. There are 3 columns in them, corresponding to class index (1 to 14), title and content. The title and content are escaped using double quotes ("), and any internal double quote is escaped by 2 double quotes (""). There are no new lines in title or content.

For Dataset Please click here

Process - Flow of This project

🚀 Installation of Text-Classification-Using-LSTM

  1. Clone the repo
git clone https://github.com/KrishArul26/Text-Classification-DBpedia-ontology-classes-Using-LSTM.git
  1. Change your directory to the cloned repo
cd Text-Classification-DBpedia-ontology-classes-Using-LSTM

  1. Create a Python 3.6 version of virtual environment name 'lstm' and activate it
pip install virtualenv

virtualenv bert

lstm\Scripts\activate

  1. Now, run the following command in your Terminal/Command Prompt to install the libraries required!!!
pip install -r requirements.txt

💡 Working

Type the following command:

python app.py

After that You will see the running IP adress just copy and paste into you browser and import or upload your speech then closk the predict button.

Implementations

In this section, contains the project directory, explanation of each python file presents in the directory.

1. Project Directory

Below picture illustrate the complete folder structure of this project.

2. preprocess.py

Below picture illustrate the preprocess.py file, It does the necessary text cleaning process such as removing punctuation, numbers, lemmatization. And it will create train_preprocessed, validation_preprocessed and test_preprocessed pickle files for the further analysis.

3. word_embedder_gensim.py

Below picture illustrate the word_embedder_gensim.py, After done with text pre-processing, this file will take those cleaned text as input and will be creating the Word2vec embedding for each word.

4. rnn_w2v.py

Below picture illustrate the rnn_w2v.py, After done with creating Word2vec for each word then those vectors will use as input for creating the LSTM model and Train the LSTM (RNN) model with body and Classes.

5. index.htmml

Below picture illustrate the index.html file, these files use to create the web frame for us.

6. main.py

Below picture illustrate the main.py, After evaluating the LSTM model, This files will create the Rest -API, To that It will use FLASK frameworks and get the request from the customer or client then It will Post into the prediction files and Answer will be deliver over the web browser.

7. Testing Rest-API

Owner
KrishArul26
Google Certified - TensorFlow Developer | Google Cloud Associated Engineer | Enthusiastic in Machine Learning | Deep Learning | Object Detection | AI
KrishArul26
NeurIPS'21: Probabilistic Margins for Instance Reweighting in Adversarial Training (Pytorch implementation).

source code for NeurIPS21 paper robabilistic Margins for Instance Reweighting in Adversarial Training

9 Dec 20, 2022
HF's ML for Audio study group

Hugging Face Machine Learning for Audio Study Group Welcome to the ML for Audio Study Group. Through a series of presentations, paper reading and disc

Vaibhav Srivastav 110 Jan 01, 2023
An Analysis Toolkit for Natural Language Generation (Translation, Captioning, Summarization, etc.)

VizSeq is a Python toolkit for visual analysis on text generation tasks like machine translation, summarization, image captioning, speech translation

Facebook Research 409 Oct 28, 2022
A python package to fine-tune transformer-based models for named entity recognition (NER).

nerblackbox A python package to fine-tune transformer-based language models for named entity recognition (NER). Resources Source Code: https://github.

Felix Stollenwerk 13 Jul 30, 2022
FB ID CLONER WUTHOT CHECKPOINT, FACEBOOK ID CLONE FROM FILE

* MY SOCIAL MEDIA : Programming And Memes Want to contact Mr. Error ? CONTACT : [ema

Mr. Error 9 Jun 17, 2021
Deeply Supervised, Layer-wise Prediction-aware (DSLP) Transformer for Non-autoregressive Neural Machine Translation

Non-Autoregressive Translation with Layer-Wise Prediction and Deep Supervision Training Efficiency We show the training efficiency of our DSLP model b

Chenyang Huang 37 Jan 04, 2023
Google's Meena transformer chatbot implementation

Here's my attempt at recreating Meena, a state of the art chatbot developed by Google Research and described in the paper Towards a Human-like Open-Domain Chatbot.

Francesco Pham 94 Dec 25, 2022
Guide to using pre-trained large language models of source code

Large Models of Source Code I occasionally train and publicly release large neural language models on programs, including PolyCoder. Here, I describe

Vincent Hellendoorn 947 Dec 28, 2022
SpeechBrain is an open-source and all-in-one speech toolkit based on PyTorch.

The goal is to create a single, flexible, and user-friendly toolkit that can be used to easily develop state-of-the-art speech technologies, including systems for speech recognition, speaker recognit

SpeechBrain 5.1k Jan 09, 2023
Datasets of Automatic Keyphrase Extraction

This repository contains 20 annotated datasets of Automatic Keyphrase Extraction made available by the research community. Following are the datasets and the original papers that proposed them. If yo

LIAAD - Laboratory of Artificial Intelligence and Decision Support 163 Dec 23, 2022
Active learning for text classification in Python

Active Learning allows you to efficiently label training data in a small-data scenario.

Webis 375 Dec 28, 2022
Indonesia spellchecker with python

indonesia-spellchecker Ganti kata yang terdapat pada file teks.txt untuk diperiksa kebenaran kata. Run on local machine python3 main.py

Rahmat Agung Julians 1 Sep 14, 2022
CMeEE 数据集医学实体抽取

医学实体抽取_GlobalPointer_torch 介绍 思想来自于苏神 GlobalPointer,原始版本是基于keras实现的,模型结构实现参考现有 pytorch 复现代码【感谢!】,基于torch百分百复现苏神原始效果。 数据集 中文医学命名实体数据集 点这里申请,很简单,共包含九类医学

85 Dec 28, 2022
Neural network models for joint POS tagging and dependency parsing (CoNLL 2017-2018)

Neural Network Models for Joint POS Tagging and Dependency Parsing Implementations of joint models for POS tagging and dependency parsing, as describe

Dat Quoc Nguyen 152 Sep 02, 2022
Build Text Rerankers with Deep Language Models

Reranker is a lightweight, effective and efficient package for training and deploying deep languge model reranker in information retrieval (IR), question answering (QA) and many other natural languag

Luyu Gao 140 Dec 06, 2022
Lattice methods in TensorFlow

TensorFlow Lattice TensorFlow Lattice is a library that implements constrained and interpretable lattice based models. It is an implementation of Mono

504 Dec 20, 2022
A Streamlit web app that generates Rick and Morty stories using GPT2.

Rick and Morty Story Generator This project uses a pre-trained GPT2 model, which was fine-tuned on Rick and Morty transcripts, to generate new stories

₸ornike 33 Oct 13, 2022
Azure Text-to-speech service for Home Assistant

Azure Text-to-speech service for Home Assistant The Azure text-to-speech platform uses online Azure Text-to-Speech cognitive service to read a text wi

Yassine Selmi 2 Aug 06, 2022
Guide: Finetune GPT2-XL (1.5 Billion Parameters) and GPT-NEO (2.7 B) on a single 16 GB VRAM V100 Google Cloud instance with Huggingface Transformers using DeepSpeed

Guide: Finetune GPT2-XL (1.5 Billion Parameters) and GPT-NEO (2.7 Billion Parameters) on a single 16 GB VRAM V100 Google Cloud instance with Huggingfa

289 Jan 06, 2023
Sentence Embeddings with BERT & XLNet

Sentence Transformers: Multilingual Sentence Embeddings using BERT / RoBERTa / XLM-RoBERTa & Co. with PyTorch This framework provides an easy method t

Ubiquitous Knowledge Processing Lab 9.1k Jan 02, 2023