Deal or No Deal? End-to-End Learning for Negotiation Dialogues

Overview

Introduction

This is a PyTorch implementation of the following research papers:

The code is developed by Facebook AI Research.

The code trains neural networks to hold negotiations in natural language, and allows reinforcement learning self play and rollout-based planning.

Citation

If you want to use this code in your research, please cite:

@inproceedings{DBLP:conf/icml/YaratsL18,
  author    = {Denis Yarats and
               Mike Lewis},
  title     = {Hierarchical Text Generation and Planning for Strategic Dialogue},
  booktitle = {Proceedings of the 35th International Conference on Machine Learning,
               {ICML} 2018, Stockholmsm{\"{a}}ssan, Stockholm, Sweden, July
               10-15, 2018},
  pages     = {5587--5595},
  year      = {2018},
  crossref  = {DBLP:conf/icml/2018},
  url       = {http://proceedings.mlr.press/v80/yarats18a.html},
  timestamp = {Fri, 13 Jul 2018 14:58:25 +0200},
  biburl    = {https://dblp.org/rec/bib/conf/icml/YaratsL18},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}

Dataset

We release our dataset together with the code, you can find it under data/negotiate. This dataset consists of 5808 dialogues, based on 2236 unique scenarios. Take a look at §2.3 of the paper to learn about data collection.

Each dialogue is converted into two training examples in the dataset, showing the complete conversation from the perspective of each agent. The perspectives differ on their input goals, output choice, and in special tokens marking whether a statement was read or written. See §3.1 for the details on data representation.

# Perspective of Agent 1
<input> 1 4 4 1 1 2 </input>
<dialogue> THEM: i would like 4 hats and you can have the rest . <eos> YOU: deal <eos> THEM: <selection> </dialogue>
<output> item0=1 item1=0 item2=1 item0=0 item1=4 item2=0 </output> 
<partner_input> 1 0 4 2 1 2 </partner_input>

# Perspective of Agent 2
<input> 1 0 4 2 1 2 </input>
<dialogue> YOU: i would like 4 hats and you can have the rest . <eos> THEM: deal <eos> YOU: <selection> </dialogue>
<output> item0=0 item1=4 item2=0 item0=1 item1=0 item2=1 </output>
<partner_input> 1 4 4 1 1 2 </partner_input>

Setup

All code was developed with Python 3.0 on CentOS Linux 7, and tested on Ubuntu 16.04. In addition, we used PyTorch 1.0.0, CUDA 9.0, and Visdom 0.1.8.4.

We recommend to use Anaconda. In order to set up a working environment follow the steps below:

# Install anaconda
conda create -n py30 python=3 anaconda
# Activate environment
source activate py30
# Install PyTorch
conda install pytorch torchvision cuda90 -c pytorch
# Install Visdom if you want to use visualization
pip install visdom

Usage

Supervised Training

Action Classifier

We use an action classifier to compare performance of various models. The action classifier is described in section 3 of (2). It can be trained by running the following command:

python train.py \
--cuda \
--bsz 16 \
--clip 2.0 \
--decay_every 1 \
--decay_rate 5.0 \
--domain object_division \
--dropout 0.1 \
--init_range 0.2 \
--lr 0.001 \
--max_epoch 7 \
--min_lr 1e-05 \
--model_type selection_model \
--momentum 0.1 \
--nembed_ctx 128 \
--nembed_word 128 \
--nhid_attn 128 \
--nhid_ctx 64 \
--nhid_lang 128 \
--nhid_sel 128 \
--nhid_strat 256 \
--unk_threshold 20 \
--skip_values \
--sep_sel \
--model_file selection_model.th

Baseline RNN Model

This is the baseline RNN model that we describe in (1):

python train.py \
--cuda \
--bsz 16 \
--clip 0.5 \
--decay_every 1 \
--decay_rate 5.0 \
--domain object_division \
--dropout 0.1 \
--model_type rnn_model \
--init_range 0.2 \
--lr 0.001 \
--max_epoch 30 \
--min_lr 1e-07 \
--momentum 0.1 \
--nembed_ctx 64 \
--nembed_word 256 \
--nhid_attn 64 \
--nhid_ctx 64 \
--nhid_lang 128 \
--nhid_sel 128 \
--sel_weight 0.6 \
--unk_threshold 20 \
--sep_sel \
--model_file rnn_model.th

Hierarchical Latent Model

In this section we provide guidelines on how to train the hierarchical latent model from (2). The final model requires two sub-models: the clustering model, which learns compact representations over intents; and the language model, which translates intent representations into language. Please read sections 5 and 6 of (2) for more details.

Clustering Model

python train.py \
--cuda \
--bsz 16 \
--clip 2.0 \
--decay_every 1 \
--decay_rate 5.0 \
--domain object_division \
--dropout 0.2 \
--init_range 0.3 \
--lr 0.001 \
--max_epoch 15 \
--min_lr 1e-05 \
--model_type latent_clustering_model \
--momentum 0.1 \
--nembed_ctx 64 \
--nembed_word 256 \
--nhid_ctx 64 \
--nhid_lang 256 \
--nhid_sel 128 \
--nhid_strat 256 \
--unk_threshold 20 \
--num_clusters 50 \
--sep_sel \
--skip_values \
--nhid_cluster 256 \
--selection_model_file selection_model.th \
--model_file clustering_model.th

Language Model

python train.py \
--cuda \
--bsz 16 \
--clip 2.0 \
--decay_every 1 \
--decay_rate 5.0 \
--domain object_division \
--dropout 0.1 \
--init_range 0.2 \
--lr 0.001 \
--max_epoch 15 \
--min_lr 1e-05 \
--model_type latent_clustering_language_model \
--momentum 0.1 \
--nembed_ctx 64 \
--nembed_word 256 \
--nhid_ctx 64 \
--nhid_lang 256 \
--nhid_sel 128 \
--nhid_strat 256 \
--unk_threshold 20 \
--num_clusters 50 \
--sep_sel \
--nhid_cluster 256 \
--skip_values \
--selection_model_file selection_model.th \
--cluster_model_file clustering_model.th \
--model_file clustering_language_model.th

Full Model

python train.py \
--cuda \
--bsz 16 \
--clip 2.0 \
--decay_every 1 \
--decay_rate 5.0 \
--domain object_division \
--dropout 0.2 \
--init_range 0.3 \
--lr 0.001 \
--max_epoch 10 \
--min_lr 1e-05 \
--model_type latent_clustering_prediction_model \
--momentum 0.2 \
--nembed_ctx 64 \
--nembed_word 256 \
--nhid_ctx 64 \
--nhid_lang 256 \
--nhid_sel 128 \
--nhid_strat 256 \
--unk_threshold 20 \
--num_clusters 50 \
--sep_sel \
--selection_model_file selection_model.th \
--lang_model_file clustering_language_model.th \
--model_file full_model.th

Selfplay

If you want to have two pretrained models to negotiate against each another, use selfplay.py. For example, lets have two rnn models to play against each other:

python selfplay.py \
--cuda \
--alice_model_file rnn_model.th \
--bob_model_file rnn_model.th \
--context_file data/negotiate/selfplay.txt  \
--temperature 0.5 \
--selection_model_file selection_model.th

The script will output generated dialogues, as well as some statistics. For example:

================================================================================
Alice : book=(count:3 value:1) hat=(count:1 value:5) ball=(count:1 value:2)
Bob   : book=(count:3 value:1) hat=(count:1 value:1) ball=(count:1 value:6)
--------------------------------------------------------------------------------
Alice : i would like the hat and the ball . <eos>
Bob   : i need the ball and the hat <eos>
Alice : i can give you the ball and one book . <eos>
Bob   : i can't make a deal without the ball <eos>
Alice : okay then i will take the hat and the ball <eos>
Bob   : okay , that's fine . <eos>
Alice : <selection>
Alice : book=0 hat=1 ball=1 book=3 hat=0 ball=0
Bob   : book=3 hat=0 ball=0 book=0 hat=1 ball=1
--------------------------------------------------------------------------------
Agreement!
Alice : 7 points
Bob   : 3 points
--------------------------------------------------------------------------------
dialog_len=4.47 sent_len=6.93 agree=86.67% advantage=3.14 time=2.069s comb_rew=10.93 alice_rew=6.93 alice_sel=60.00% alice_unique=26 bob_rew=4.00 bob_sel=40.00% bob_unique=25 full_match=0.78 
--------------------------------------------------------------------------------
debug: 3 1 1 5 1 2 item0=0 item1=1 item2=1
debug: 3 1 1 1 1 6 item0=3 item1=0 item2=0
================================================================================

Reinforcement Learning

To fine-tune a pretrained model with RL use the reinforce.py script:

python reinforce.py \
--cuda \
--alice_model_file rnn_model.th \
--bob_model_file rnn_model.th \
--output_model_file rnn_rl_model.th \
--context_file data/negotiate/selfplay.txt  \
--temperature 0.5 \
--verbose \
--log_file rnn_rl.log \
--sv_train_freq 4 \
--nepoch 4 \
--selection_model_file selection_model.th  \
--rl_lr 0.00001 \
--rl_clip 0.0001 \
--sep_sel

License

This project is licenced under CC-by-NC, see the LICENSE file for details.

Owner
Facebook Research
Facebook Research
Generate product descriptions, blogs, ads and more using GPT architecture with a single request to TextCortex API a.k.a Hemingwai

TextCortex - HemingwAI Generate product descriptions, blogs, ads and more using GPT architecture with a single request to TextCortex API a.k.a Hemingw

TextCortex AI 27 Nov 28, 2022
A fast Text-to-Speech (TTS) model. Work well for English, Mandarin/Chinese, Japanese, Korean, Russian and Tibetan (so far). 快速语音合成模型,适用于英语、普通话/中文、日语、韩语、俄语和藏语(当前已测试)。

简体中文 | English 并行语音合成 [TOC] 新进展 2021/04/20 合并 wavegan 分支到 main 主分支,删除 wavegan 分支! 2021/04/13 创建 encoder 分支用于开发语音风格迁移模块! 2021/04/13 softdtw 分支 支持使用 Sof

Atomicoo 161 Dec 19, 2022
A minimal Conformer ASR implementation adapted from ESPnet.

Conformer ASR A minimal Conformer ASR implementation adapted from ESPnet. Introduction I want to use the pre-trained English ASR model provided by ESP

Niu Zhe 3 Jan 24, 2022
Unofficial Implementation of Zero-Shot Text-to-Speech for Text-Based Insertion in Audio Narration

Zero-Shot Text-to-Speech for Text-Based Insertion in Audio Narration This repo contains only model Implementation of Zero-Shot Text-to-Speech for Text

Rishikesh (ऋषिकेश) 33 Sep 22, 2022
Text editor on python tkinter to convert english text to other languages with the help of ployglot.

Transliterator Text Editor This is a simple transliteration program which is used to convert english word to phonetically matching word in another lan

Merin Rose Tom 1 Jan 16, 2022
Journalism AI – Quotes extraction for modular journalism

Quote extraction for modular journalism (JournalismAI collab 2021)

Journalism AI collab 2021 207 Dec 25, 2022
🏆 • 5050 most frequent words in 109 languages

🏆 Most Common Words Multilingual 5000 most frequent words in 109 languages. Uses wordfrequency.info as a source. 🔗 License source code license data

14 Nov 24, 2022
A calibre plugin that generates Word Wise and X-Ray files then sends them to Kindle. Supports KFX, AZW3 and MOBI eBooks. X-Ray supports 18 languages.

WordDumb A calibre plugin that generates Word Wise and X-Ray files then sends them to Kindle. Supports KFX, AZW3 and MOBI eBooks. Languages X-Ray supp

172 Dec 29, 2022
GNES enables large-scale index and semantic search for text-to-text, image-to-image, video-to-video and any-to-any content form

GNES is Generic Neural Elastic Search, a cloud-native semantic search system based on deep neural network.

GNES.ai 1.2k Jan 06, 2023
Write Python in Urdu - اردو میں کوڈ لکھیں

UrduPython Write simple Python in Urdu. How to Use Write Urdu code in سامپل۔پے The mappings are as following: "۔": ".", "،":

Saad A. Bazaz 26 Nov 27, 2022
CoSENT、STS、SentenceBERT

CoSENT_Pytorch 比Sentence-BERT更有效的句向量方案

102 Dec 07, 2022
MicBot - MicBot uses Google Translate to speak everyone's chat messages

MicBot MicBot uses Google Translate to speak everyone's chat messages. It can al

2 Mar 09, 2022
BERN2: an advanced neural biomedical namedentity recognition and normalization tool

BERN2 We present BERN2 (Advanced Biomedical Entity Recognition and Normalization), a tool that improves the previous neural network-based NER tool by

DMIS Laboratory - Korea University 99 Jan 06, 2023
PyJPBoatRace: Python-based Japanese boatrace tools 🚤

pyjpboatrace :speedboat: provides you with useful tools for data analysis and auto-betting for boatrace.

5 Oct 29, 2022
Transfer Learning from Speaker Verification to Multispeaker Text-To-Speech Synthesis (SV2TTS)

This repository is an implementation of Transfer Learning from Speaker Verification to Multispeaker Text-To-Speech Synthesis (SV2TTS) with a vocoder that works in real-time. Feel free to check my the

Corentin Jemine 38.5k Jan 03, 2023
Use PaddlePaddle to reproduce the paper:mT5: A Massively Multilingual Pre-trained Text-to-Text Transformer

MT5_paddle Use PaddlePaddle to reproduce the paper:mT5: A Massively Multilingual Pre-trained Text-to-Text Transformer English | 简体中文 mT5: A Massively

2 Oct 17, 2021
This is the source code of RPG (Reward-Randomized Policy Gradient)

RPG (Reward-Randomized Policy Gradient) Zhenggang Tang*, Chao Yu*, Boyuan Chen, Huazhe Xu, Xiaolong Wang, Fei Fang, Simon Shaolei Du, Yu Wang, Yi Wu (

40 Nov 25, 2022
GPT-2 Model for Leetcode Questions in python

Leetcode using AI 🤖 GPT-2 Model for Leetcode Questions in python New demo here: https://huggingface.co/spaces/gagan3012/project-code-py Note: the Ans

Gagan Bhatia 100 Dec 12, 2022
Contains the code and data for our #ICSE2022 paper titled as "CodeFill: Multi-token Code Completion by Jointly Learning from Structure and Naming Sequences"

CodeFill This repository contains the code for our paper titled as "CodeFill: Multi-token Code Completion by Jointly Learning from Structure and Namin

Software Analytics Lab 11 Oct 31, 2022
We have built a Voice based Personal Assistant for people to access files hands free in their device using natural language processing.

Voice Based Personal Assistant We have built a Voice based Personal Assistant for people to access files hands free in their device using natural lang

Rushabh 2 Nov 13, 2021