ConvBERT-Prod

Overview

ConvBERT

目录

0. 仓库结构

root:[./]
|--convbert_base_outputs
|      |--args.json
|      |--best.pdparams
|      |      |--model_config.json
|      |      |--model_state.pdparams
|      |      |--tokenizer_config.json
|      |      |--vocab.txt
|--convbert_infer
|      |--inference.pdiparams
|      |--inference.pdiparams.info
|      |--inference.pdmodel
|      |--tokenizer_config.json
|      |--vocab.txt
|--deploy
|      |--inference_python
|      |      |--infer.py
|      |      |--README.md
|      |--serving_python
|      |      |--config.yml
|      |      |--convbert_client
|      |      |      |--serving_client_conf.prototxt
|      |      |      |--serving_client_conf.stream.prototxt
|      |      |--convbert_server
|      |      |      |--inference.pdiparams
|      |      |      |--inference.pdmodel
|      |      |      |--serving_server_conf.prototxt
|      |      |      |--serving_server_conf.stream.prototxt
|      |      |--PipelineServingLogs
|      |      |      |--pipeline.log
|      |      |      |--pipeline.log.wf
|      |      |      |--pipeline.tracer
|      |      |--pipeline_http_client.py
|      |      |--ProcessInfo.json
|      |      |--README.md
|      |      |--web_service.py
|--images
|      |--convbert_framework.jpg
|      |--py_serving_client_results.jpg
|      |--py_serving_startup_visualization.jpg
|--LICENSE
|--output_inference_engine.npy
|--output_predict_engine.npy
|--paddlenlp
|--print_project_tree.py
|--README.md
|--requirements.txt
|--shell
|      |--export.sh
|      |--inference_python.sh
|      |--predict.sh
|      |--train.sh
|      |--train_dist.sh
|--test_tipc
|      |--common_func.sh
|      |--configs
|      |      |--ConvBERT
|      |      |      |--model_linux_gpu_normal_normal_serving_python_linux_gpu_cpu.txt
|      |      |      |--train_infer_python.txt
|      |--docs
|      |      |--test_serving.md
|      |      |--test_train_inference_python.md
|      |      |--tipc_guide.png
|      |      |--tipc_serving.png
|      |      |--tipc_train_inference.png
|      |--output
|      |      |--python_infer_cpu_usemkldnn_False_threads_null_precision_null_batchsize_null.log
|      |      |--python_infer_gpu_usetrt_null_precision_null_batchsize_null.log
|      |      |--results_python.log
|      |      |--results_serving.log
|      |      |--server_infer_gpu_pipeline_http_usetrt_null_precision_null_batchsize_1.log
|      |--README.md
|      |--test_serving.sh
|      |--test_train_inference_python.sh
|--tools
|      |--export_model.py
|      |--predict.py
|--train.log
|--train.py

1. 简介

论文: ConvBERT: Improving BERT with Span-based Dynamic Convolution

摘要: 像BERT及其变体这样的预训练语言模型最近在各种自然语言理解任务中取得了令人印象深刻的表现。然而,BERT严重依赖全局自注意力块,因此需要大量内存占用和计算成本。 虽然它的所有注意力头从全局角度查询整个输入序列以生成注意力图,但我们观察到一些头只需要学习局部依赖,这意味着存在计算冗余。 因此,我们提出了一种新颖的基于跨度的动态卷积来代替这些自注意力头,以直接对局部依赖性进行建模。新的卷积头与其余的自注意力头一起形成了一个新的混合注意力块,在全局和局部上下文学习中都更有效。 我们为 BERT 配备了这种混合注意力设计并构建了一个ConvBERT模型。实验表明,ConvBERT 在各种下游任务中明显优于BERT及其变体,具有更低的训练成本和更少的模型参数。 值得注意的是,ConvBERT-base 模型达到86.4GLUE分数,比ELECTRA-base高0.7,同时使用不到1/4的训练成本。

2. 数据集和复现精度

数据集为SST-2

模型 sst-2 dev acc (复现精度)
ConvBERT 0.9461

3. 准备环境与数据

3.1 准备环境

  • 下载代码
git clone https://github.com/junnyu/ConvBERT-Prod.git
  • 安装paddlepaddle
# 需要安装2.2及以上版本的Paddle,如果
# 安装GPU版本的Paddle
pip install paddlepaddle-gpu==2.2.0
# 安装CPU版本的Paddle
pip install paddlepaddle==2.2.0

更多安装方法可以参考:Paddle安装指南

  • 安装requirements
pip install -r requirements.txt

3.2 准备数据

SST-2数据已经集成在paddlenlp仓库中。

3.3 准备模型

如果您希望直接体验评估或者预测推理过程,可以直接根据第2章的内容下载提供的预训练模型,直接体验模型评估、预测、推理部署等内容。

4. 开始使用

4.1 模型训练

  • 单机单卡训练
export CUDA_VISIBLE_DEVICES=0
python -m paddle.distributed.launch --gpus "0" train.py \
    --model_type convbert \
    --model_name_or_path convbert-base \
    --task_name sst-2 \
    --max_seq_length 128 \
    --learning_rate 1e-4 \
    --num_train_epochs 3 \
    --output_dir ./convbert_base_outputs/ \
    --logging_steps 100 \
    --save_steps 400 \
    --batch_size 32   \
    --warmup_proportion 0.1

部分训练日志如下所示。

====================================================================================================
global step 2500/6315, epoch: 1, batch: 394, rank_id: 0, loss: 0.140546, lr: 0.0000671182, speed: 3.7691 step/s
global step 2600/6315, epoch: 1, batch: 494, rank_id: 0, loss: 0.062813, lr: 0.0000653589, speed: 4.1413 step/s
global step 2700/6315, epoch: 1, batch: 594, rank_id: 0, loss: 0.051268, lr: 0.0000635996, speed: 4.1867 step/s
global step 2800/6315, epoch: 1, batch: 694, rank_id: 0, loss: 0.133289, lr: 0.0000618403, speed: 4.1769 step/s
eval loss: 0.342346, acc: 0.9461009174311926,
eval done total : 1.9056718349456787 s
====================================================================================================
  • 单机多卡训练
export CUDA_VISIBLE_DEVICES=0,1,2,3
python -m paddle.distributed.launch --gpus "0,1,2,3" train.py \
    --model_type convbert \
    --model_name_or_path convbert-base \
    --task_name sst-2 \
    --max_seq_length 128 \
    --learning_rate 1e-4 \
    --num_train_epochs 3 \
    --output_dir ./convbert_base_outputs/ \
    --logging_steps 100 \
    --save_steps 400 \
    --batch_size 32   \
    --warmup_proportion 0.1

更多配置参数可以参考train.pyget_args_parser函数。

4.2 模型评估

该项目中,训练与评估脚本同时进行,请查看训练过程中的评价指标。

4.3 模型预测

  • 使用GPU预测
python tools/predict.py --model_path=./convbert_base_outputs/best.pdparams

对于下面的文本进行预测

the problem , it is with most of these things , is the script .

最终输出结果为label_id: 0, prob: 0.9959235191345215,表示预测的标签ID是0,置信度为0.9959

  • 使用CPU预测
python tools/predict.py --model_path=./convbert_base_outputs/best.pdparams --device=cpu

对于下面的文本进行预测

the problem , it is with most of these things , is the script .

最终输出结果为label_id: 0, prob: 0.995919406414032,表示预测的标签ID是0,置信度为0.9959

5. 模型推理部署

5.1 基于Inference的推理

Inference推理教程可参考:链接

5.2 基于Serving的服务化部署

Serving部署教程可参考:链接

6. TIPC自动化测试脚本

以Linux基础训练推理测试为例,测试流程如下。

  • 运行测试命令
bash test_tipc/test_train_inference_python.sh test_tipc/configs/ConvBERT/train_infer_python.txt whole_train_whole_infer

如果运行成功,在终端中会显示下面的内容,具体的日志也会输出到test_tipc/output/文件夹中的文件中。

�[33m Run successfully with command - python train.py --save_steps 400      --max_steps=6315           !  �[0m
�[33m Run successfully with command - python tools/export_model.py --model_path=./convbert_base_outputs/best.pdparams --save_inference_dir ./convbert_infer      !  �[0m
�[33m Run successfully with command - python deploy/inference_python/infer.py --model_dir ./convbert_infer --use_gpu=True               > ./test_tipc/output/python_infer_gpu_usetrt_null_precision_null_batchsize_null.log 2>&1 !  �[0m
�[33m Run successfully with command - python deploy/inference_python/infer.py --model_dir ./convbert_infer --use_gpu=False --benchmark=False               > ./test_tipc/output/python_infer_cpu_usemkldnn_False_threads_null_precision_null_batchsize_null.log 2>&1 !  �[0m

7. 注意

为了可以使用静态图导出功能,本项目修改了paddlenlp仓库中的convbert模型,主要修改部分如下。

    1. 使用paddle.shape而不是tensor.shape获取tensor的形状。
    1. F.unfold对于静态图不怎么友好,只好采用for循环。
if self.conv_type == "sdconv":
    bs = paddle.shape(q)[0]
    seqlen = paddle.shape(q)[1]
    mixed_key_conv_attn_layer = self.key_conv_attn_layer(query)
    conv_attn_layer = mixed_key_conv_attn_layer * q

    # conv_kernel_layer
    conv_kernel_layer = self.conv_kernel_layer(conv_attn_layer)
    conv_kernel_layer = tensor.reshape(
        conv_kernel_layer, shape=[-1, self.conv_kernel_size, 1])
    conv_kernel_layer = F.softmax(conv_kernel_layer, axis=1)
    conv_out_layer = self.conv_out_layer(query)
    conv_out_layer = paddle.stack(
        [
            paddle.slice(F.pad(conv_out_layer, pad=[
                            self.padding, self.padding], data_format="NLC"), [1], starts=[i], ends=[i+seqlen])
            for i in range(self.conv_kernel_size)
        ],
        axis=-1,
    )
    conv_out_layer = tensor.reshape(
        conv_out_layer,
        shape=[-1, self.head_dim, self.conv_kernel_size])
    conv_out_layer = tensor.matmul(conv_out_layer, conv_kernel_layer)
    conv_out = tensor.reshape(
        conv_out_layer,
        shape=[bs, seqlen, self.num_heads, self.head_dim])

8. LICENSE

本项目的发布受Apache 2.0 license许可认证。

9. 参考链接与文献

TODO

Owner
yujun
Please show me your code.
yujun
Différents programmes créant une interface graphique a l'aide de Tkinter pour simplifier la vie des étudiants.

GP211-Grand-Projet Ce repertoire contient tout les programmes nécessaires au bon fonctionnement de notre projet-logiciel. Cette interface graphique es

1 Dec 21, 2021
HuggingTweets - Train a model to generate tweets

HuggingTweets - Train a model to generate tweets Create in 5 minutes a tweet generator based on your favorite Tweeter Make my own model with the demo

Boris Dayma 318 Jan 04, 2023
A fast Text-to-Speech (TTS) model. Work well for English, Mandarin/Chinese, Japanese, Korean, Russian and Tibetan (so far). 快速语音合成模型,适用于英语、普通话/中文、日语、韩语、俄语和藏语(当前已测试)。

简体中文 | English 并行语音合成 [TOC] 新进展 2021/04/20 合并 wavegan 分支到 main 主分支,删除 wavegan 分支! 2021/04/13 创建 encoder 分支用于开发语音风格迁移模块! 2021/04/13 softdtw 分支 支持使用 Sof

Atomicoo 161 Dec 19, 2022
無料で使える中品質なテキスト読み上げソフトウェア、VOICEVOXの音声合成エンジン

VOICEVOX ENGINE VOICEVOXの音声合成エンジン。 実態は HTTP サーバーなので、リクエストを送信すればテキスト音声合成できます。 API ドキュメント VOICEVOX ソフトウェアを起動した状態で、ブラウザから

Hiroshiba 3 Jul 05, 2022
This is a really simple text-to-speech app made with python and tkinter.

Tkinter Text-to-Speech App by Souvik Roy This is a really simple tkinter app which converts the text you have entered into a speech. It is created wit

Souvik Roy 1 Dec 21, 2021
An evaluation toolkit for voice conversion models.

Voice-conversion-evaluation An evaluation toolkit for voice conversion models. Sample test pair Generate the metadata for evaluating models. The direc

30 Aug 29, 2022
Unsupervised text tokenizer focused on computational efficiency

YouTokenToMe YouTokenToMe is an unsupervised text tokenizer focused on computational efficiency. It currently implements fast Byte Pair Encoding (BPE)

VK.com 847 Dec 19, 2022
An example project using OpenPrompt under pytorch-lightning for prompt-based SST2 sentiment analysis model

pl_prompt_sst An example project using OpenPrompt under the framework of pytorch-lightning for a training prompt-based text classification model on SS

Zhiling Zhang 5 Oct 21, 2022
Research code for the paper "Fine-tuning wav2vec2 for speaker recognition"

Fine-tuning wav2vec2 for speaker recognition This is the code used to run the experiments in https://arxiv.org/abs/2109.15053. Detailed logs of each t

Nik 103 Dec 26, 2022
Diaformer: Automatic Diagnosis via Symptoms Sequence Generation

Diaformer Diaformer: Automatic Diagnosis via Symptoms Sequence Generation (AAAI 2022) Diaformer is an efficient model for automatic diagnosis via symp

Junying Chen 20 Dec 13, 2022
Tensorflow implementation of paper: Learning to Diagnose with LSTM Recurrent Neural Networks.

Multilabel time series classification with LSTM Tensorflow implementation of model discussed in the following paper: Learning to Diagnose with LSTM Re

Aaqib 552 Nov 28, 2022
We have built a Voice based Personal Assistant for people to access files hands free in their device using natural language processing.

Voice Based Personal Assistant We have built a Voice based Personal Assistant for people to access files hands free in their device using natural lang

Rushabh 2 Nov 13, 2021
The implementation of Parameter Differentiation based Multilingual Neural Machine Translation

The implementation of Parameter Differentiation based Multilingual Neural Machine Translation .

Qian Wang 21 Dec 17, 2022
A 30000+ Chinese MRC dataset - Delta Reading Comprehension Dataset

Delta Reading Comprehension Dataset 台達閱讀理解資料集 Delta Reading Comprehension Dataset (DRCD) 屬於通用領域繁體中文機器閱讀理解資料集。 本資料集期望成為適用於遷移學習之標準中文閱讀理解資料集。 本資料集從2,108篇

272 Dec 15, 2022
Document processing using transformers

Doc Transformers Document processing using transformers. This is still in developmental phase, currently supports only extraction of form data i.e (ke

Vishnu Nandakumar 13 Dec 21, 2022
A collection of models for image - text generation in ACM MM 2021.

Bi-directional Image and Text Generation UMT-BITG (image & text generator) Unifying Multimodal Transformer for Bi-directional Image and Text Generatio

Multimedia Research 63 Oct 30, 2022
AI-powered literature discovery and review engine for medical/scientific papers

AI-powered literature discovery and review engine for medical/scientific papers paperai is an AI-powered literature discovery and review engine for me

NeuML 819 Dec 30, 2022
Open-Source Toolkit for End-to-End Speech Recognition leveraging PyTorch-Lightning and Hydra.

🤗 Contributing to OpenSpeech 🤗 OpenSpeech provides reference implementations of various ASR modeling papers and three languages recipe to perform ta

Openspeech TEAM 513 Jan 03, 2023
An implementation of model parallel GPT-3-like models on GPUs, based on the DeepSpeed library. Designed to be able to train models in the hundreds of billions of parameters or larger.

GPT-NeoX An implementation of model parallel GPT-3-like models on GPUs, based on the DeepSpeed library. Designed to be able to train models in the hun

EleutherAI 3.1k Jan 08, 2023
Natural Language Processing with transformers

we want to create a repo to illustrate usage of transformers in chinese

Datawhale 763 Dec 27, 2022