Python module (C extension and plain python) implementing Aho-Corasick algorithm

Overview

pyahocorasick

Linux Master branch tests status Windows Master branch tests status

pyahocorasick is a fast and memory efficient library for exact or approximate multi-pattern string search meaning that you can find multiple key strings occurrences at once in some input text. The library provides an ahocorasick Python module that you can use as a plain dict-like Trie or convert a Trie to an automaton for efficient Aho-Corasick search.

It is implemented in C and tested on Python 2.7 and 3.4+. It works on Linux, Mac and Windows.

The license is BSD-3-clause. Some utilities, such as tests and the pure Python automaton are dedicated to the Public Domain.

Download and source code

You can fetch pyahocorasick from:

Quick start

This module is written in C. You need a C compiler installed to compile native CPython extensions. To install:

pip install pyahocorasick

Then create an Automaton:

>>> import ahocorasick
>>> A = ahocorasick.Automaton()

You can use the Automaton class as a trie. Add some string keys and their associated value to this trie. Here we associate a tuple of (insertion index, original string) as a value to each key string we add to the trie:

>>> for idx, key in enumerate('he her hers she'.split()):
...   A.add_word(key, (idx, key))

Then check if some string exists in the trie:

>>> 'he' in A
True
>>> 'HER' in A
False

And play with the get() dict-like method:

>>> A.get('he')
(0, 'he')
>>> A.get('she')
(3, 'she')
>>> A.get('cat', 'not exists')
'not exists'
>>> A.get('dog')
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
KeyError

Now convert the trie to an Aho-Corasick automaton to enable Aho-Corasick search:

>>> A.make_automaton()

Then search all occurrences of the keys (the needles) in an input string (our haystack).

Here we print the results and just check that they are correct. The Automaton.iter() method return the results as two-tuples of the end index where a trie key was found in the input string and the associated value for this key. Here we had stored as values a tuple with the original string and its trie insertion order:

>>> for end_index, (insert_order, original_value) in A.iter(haystack):
...     start_index = end_index - len(original_value) + 1
...     print((start_index, end_index, (insert_order, original_value)))
...     assert haystack[start_index:start_index + len(original_value)] == original_value
...
(1, 2, (0, 'he'))
(1, 3, (1, 'her'))
(1, 4, (2, 'hers'))
(4, 6, (3, 'she'))
(5, 6, (0, 'he'))

You can also create an eventually large automaton ahead of time and pickle it to re-load later. Here we just pickle to a string. You would typically pickle to a file instead:

>>> import cPickle
>>> pickled = cPickle.dumps(A)
>>> B = cPickle.loads(pickled)
>>> B.get('he')
(0, 'he')
See also:

Documentation

The full documentation including the API overview and reference is published on readthedocs.

Overview

With an Aho-Corasick automaton you can efficiently search all occurrences of multiple strings (the needles) in an input string (the haystack) making a single pass over the input string. With pyahocorasick you can eventually build large automatons and pickle them to reuse them over and over as an indexed structure for fast multi pattern string matching.

One of the advantages of an Aho-Corasick automaton is that the typical worst-case and best-case runtimes are about the same and depends primarily on the size of the input string and secondarily on the number of matches returned. While this may not be the fastest string search algorithm in all cases, it can search for multiple strings at once and its runtime guarantees make it rather unique. Because pyahocorasick is based on a Trie, it stores redundant keys prefixes only once using memory efficiently.

A drawback is that it needs to be constructed and "finalized" ahead of time before you can search strings. In several applications where you search for several pre-defined "needles" in a variable "haystacks" this is actually an advantage.

Aho-Corasick automatons are commonly used for fast multi-pattern matching in intrusion detection systems (such as snort), anti-viruses and many other applications that need fast matching against a pre-defined set of string keys.

Internally an Aho-Corasick automaton is typically based on a Trie with extra data for failure links and an implementation of the Aho-Corasick search procedure.

Behind the scenes the pyahocorasick Python library implements these two data structures: a Trie and an Aho-Corasick string matching automaton. Both are exposed through the Automaton class.

In addition to Trie-like and Aho-Corasick methods and data structures, pyahocorasick also implements dict-like methods: The pyahocorasick Automaton is a Trie a dict-like structure indexed by string keys each associated with a value object. You can use this to retrieve an associated value in a time proportional to a string key length.

pyahocorasick is available in two flavors:

  • a CPython C-based extension, compatible with Python 2 and 3.
  • a simpler pure Python module, compatible with Python 2 and 3. This is only available in the source repository (not on Pypi) under the py/ directory and has a slightly different API.

Unicode and bytes

The type of strings accepted and returned by Automaton methods are either unicode or bytes, depending on a compile time settings (preprocessor definition of AHOCORASICK_UNICODE as set in setup.py).

The Automaton.unicode attributes can tell you how the library was built. On Python 3, unicode is the default. On Python 2, bytes is the default and only value.

Warning

When the library is built with unicode support on Python 3, an Automaton will store 2 or 4 bytes per letter, depending on your Python installation. When built for bytes, only one byte per letter is needed.

Unicode is NOT supported on Python 2 for now.

Build and install from PyPi

To install for common operating systems, use pip. Pre-built wheels should be available on Pypi at some point in the future:

pip install pyahocorasick

To build from sources you need to have a C compiler installed and configured which should be standard on Linux and easy to get on MacOSX.

On Windows and Python 2.7 you need the Microsoft Visual C++ Compiler for Python 2.7 (aka. Visual Studio 2008). There have been reports that pyahocorasick does not build yet with MinGW. It may build with cygwin but this has not been tested. If you get this working with these platforms, please report in a ticket!

To build from sources, clone the git repository or download and extract the source archive.

Install pip (and its setuptools companion) and then run (in a virtualenv of course!):

pip install .

If compilation succeeds, the module is ready to use.

Support

Support is available through the GitHub issue tracker to report bugs or ask questions.

Contributing

You can submit contributions through GitHub pull requests.

Authors

The initial author and maintainer is Wojciech Muła. Philippe Ombredanne, the current co-owner, rewrote documentation, setup CI servers and did a whole lot of work to make this module better accessible to end users.

Alphabetic list of authors:

  • Andrew Grigorev
  • Bogdan
  • David Woakes
  • Edward Betts
  • Frankie Robertson
  • Frederik Petersen
  • gladtosee
  • INADA Naoki
  • Jan Fan
  • Pastafarianist
  • Philippe Ombredanne
  • Renat Nasyrov
  • Sylvain Zimmer
  • Xiaopeng Xu

This library would not be possible without help of many people, who contributed in various ways. They created pull requests, reported bugs as GitHub issues or via direct messages, proposed fixes, or spent their valuable time on testing.

Thank you.

License

This library is licensed under very liberal BSD-3-Clause license. Some portions of the code are dedicated to the public domain such as the pure Python automaton and test code.

Full text of license is available in LICENSE file.

Other Aho-Corasick implementations for Python you can consider

While pyahocorasick tries to be the finest and fastest Aho Corasick library for Python you may consider these other libraries:

  • Written in pure Python.
  • Poor performance.
  • Written in pure Python.
  • Better performance than py-aho-corasick.
  • Using pypy, ahocorapy's search performance is only slightly worse than pyahocorasick's.
  • Performs additional suffix shortcutting (more setup overhead, less search overhead for suffix lookups).
  • Includes visualization tool for resulting automaton (using pygraphviz).
  • MIT-licensed, 100% test coverage, tested on all major python versions (+ pypy)
  • Written in C. Does not return overlapping matches.
  • Does not compile on Windows (July 2016).
  • No support for the pickle protocol.
  • Written in Cython.
  • Large automaton may take a long time to build (July 2016)
  • No support for a dict-like protocol to associate a value to a string key.
  • Written in C.
  • seems unmaintained (last update in 2005).
  • GPL-licensed.
Owner
Wojciech Muła
Wojciech Muła
SentimentArcs: a large ensemble of dozens of sentiment analysis models to analyze emotion in text over time

SentimentArcs - Emotion in Text An end-to-end pipeline based on Jupyter notebooks to detect, extract, process and anlayze emotion over time in text. E

jon_chun 14 Dec 19, 2022
中文生成式预训练模型

T5 PEGASUS 中文生成式预训练模型,以mT5为基础架构和初始权重,通过类似PEGASUS的方式进行预训练。 详情可见:https://kexue.fm/archives/8209 Tokenizer 我们将T5 PEGASUS的Tokenizer换成了BERT的Tokenizer,它对中文更

410 Jan 03, 2023
Finally, some decent sample sentences

tts-dataset-prompts This repository aims to be a decent set of sentences for people looking to clone their own voices (e.g. using Tacotron 2). Each se

hecko 19 Dec 13, 2022
Blazing fast language detection using fastText model

Luga A blazing fast language detection using fastText's language models Luga is a Swahili word for language. fastText provides a blazing fast language

Prayson Wilfred Daniel 18 Dec 20, 2022
Stanford CoreNLP provides a set of natural language analysis tools written in Java

Stanford CoreNLP Stanford CoreNLP provides a set of natural language analysis tools written in Java. It can take raw human language text input and giv

Stanford NLP 8.8k Jan 07, 2023
Framework for fine-tuning pretrained transformers for Named-Entity Recognition (NER) tasks

NERDA Not only is NERDA a mesmerizing muppet-like character. NERDA is also a python package, that offers a slick easy-to-use interface for fine-tuning

Ekstra Bladet 141 Dec 30, 2022
WIT (Wikipedia-based Image Text) Dataset is a large multimodal multilingual dataset comprising 37M+ image-text sets with 11M+ unique images across 100+ languages.

WIT (Wikipedia-based Image Text) Dataset is a large multimodal multilingual dataset comprising 37M+ image-text sets with 11M+ unique images across 100+ languages.

Google Research Datasets 740 Dec 24, 2022
Training open neural machine translation models

Train Opus-MT models This package includes scripts for training NMT models using MarianNMT and OPUS data for OPUS-MT. More details are given in the Ma

Language Technology at the University of Helsinki 167 Jan 03, 2023
Code for hyperboloid embeddings for knowledge graph entities

Implementation for the papers: Self-Supervised Hyperboloid Representations from Logical Queries over Knowledge Graphs, Nurendra Choudhary, Nikhil Rao,

30 Dec 10, 2022
Anomaly Detection 이상치 탐지 전처리 모듈

Anomaly Detection 시계열 데이터에 대한 이상치 탐지 1. Kernel Density Estimation을 활용한 이상치 탐지 train_data_path와 test_data_path에 존재하는 시점 정보를 포함하고 있는 csv 형태의 train data와

CLUST-consortium 43 Nov 28, 2022
Library for fast text representation and classification.

fastText fastText is a library for efficient learning of word representations and sentence classification. Table of contents Resources Models Suppleme

Facebook Research 24.1k Jan 05, 2023
A Python 3.6+ package to run .many files, where many programs written in many languages may exist in one file.

RunMany Intro | Installation | VSCode Extension | Usage | Syntax | Settings | About A tool to run many programs written in many languages from one fil

6 May 22, 2022
Perform sentiment analysis and keyword extraction on Craigslist listings

craiglist-helper synopsis Perform sentiment analysis and keyword extraction on Craigslist listings Background I love Craigslist. I've found most of my

Mark Musil 1 Nov 08, 2021
Just Another Telegram Ai Chat Bot Written In Python With Pyrogram.

OkaeriChatBot Just another Telegram AI chat bot written in Python using Pyrogram. Requirements Python 3.7 or higher.

Wahyusaputra 2 Dec 23, 2021
Khandakar Muhtasim Ferdous Ruhan 1 Dec 30, 2021
Multilingual finetuning of Machine Translation model on low-resource languages. Project for Deep Natural Language Processing course.

Low-resource-Machine-Translation This repository contains the code for the project relative to the course Deep Natural Language Processing. The goal o

Andrea Cavallo 3 Jun 22, 2022
Use PaddlePaddle to reproduce the paper:mT5: A Massively Multilingual Pre-trained Text-to-Text Transformer

MT5_paddle Use PaddlePaddle to reproduce the paper:mT5: A Massively Multilingual Pre-trained Text-to-Text Transformer English | 简体中文 mT5: A Massively

2 Oct 17, 2021
Applied Natural Language Processing in the Enterprise - An O'Reilly Media Publication

Applied Natural Language Processing in the Enterprise This is the companion repo for Applied Natural Language Processing in the Enterprise, an O'Reill

Applied Natural Language Processing in the Enterprise 95 Jan 05, 2023
DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism (SVS & TTS); AAAI 2022

DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism This repository is the official PyTorch implementation of our AAAI-2022 paper, in

Jinglin Liu 829 Jan 07, 2023
The following links explain a bit the idea of semantic search and how search mechanisms work by doing retrieve and rerank

Main Idea The following links explain a bit the idea of semantic search and how search mechanisms work by doing retrieve and rerank Semantic Search Re

Sergio Arnaud Gomez 2 Jan 28, 2022