Multi Task Vision and Language

Overview

12-in-1: Multi-Task Vision and Language Representation Learning

Please cite the following if you use this code. Code and pre-trained models for 12-in-1: Multi-Task Vision and Language Representation Learning:

@InProceedings{Lu_2020_CVPR,
author = {Lu, Jiasen and Goswami, Vedanuj and Rohrbach, Marcus and Parikh, Devi and Lee, Stefan},
title = {12-in-1: Multi-Task Vision and Language Representation Learning},
booktitle = {The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2020}
}

and ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks:

@inproceedings{lu2019vilbert,
  title={Vilbert: Pretraining task-agnostic visiolinguistic representations for vision-and-language tasks},
  author={Lu, Jiasen and Batra, Dhruv and Parikh, Devi and Lee, Stefan},
  booktitle={Advances in Neural Information Processing Systems},
  pages={13--23},
  year={2019}
}

Repository Setup

  1. Create a fresh conda environment, and install all dependencies.
conda create -n vilbert-mt python=3.6
conda activate vilbert-mt
git clone --recursive https://github.com/facebookresearch/vilbert-multi-task.git
cd vilbert-multi-task
pip install -r requirements.txt
  1. Install pytorch
conda install pytorch torchvision cudatoolkit=10.0 -c pytorch
  1. Install apex, follows https://github.com/NVIDIA/apex

  2. Install this codebase as a package in this environment.

python setup.py develop

Data Setup

Check README.md under data for more details.

Visiolinguistic Pre-training and Multi Task Training

Pretraining on Conceptual Captions

python train_concap.py --bert_model bert-base-uncased --config_file config/bert_base_6layer_6conect.json --train_batch_size 512 --objective 1 --file_path <path_to_extracted_cc_features>

Download link

Multi-task Training

python train_tasks.py --bert_model bert-base-uncased --from_pretrained <pretrained_model_path> --config_file config/bert_base_6layer_6conect.json --tasks 1-2-4-7-8-9-10-11-12-13-15-17 --lr_scheduler 'warmup_linear' --train_iter_gap 4 --task_specific_tokens --save_name multi_task_model

Download link

Fine-tune from Multi-task trained model

python train_tasks.py --bert_model bert-base-uncased --from_pretrained <multi_task_model_path> --config_file config/bert_base_6layer_6conect.json --tasks 1 --lr_scheduler 'warmup_linear' --train_iter_gap 4 --task_specific_tokens --save_name finetune_from_multi_task_model

License

vilbert-multi-task is licensed under MIT license available in LICENSE file.

Owner
Meta Research
Meta Research
A Lightweight NLP Data Loader for All Deep Learning Frameworks in Python

LineFlow: Framework-Agnostic NLP Data Loader in Python LineFlow is a simple text dataset loader for NLP deep learning tasks. LineFlow was designed to

TofuNLP 177 Jan 04, 2023
✨Rubrix is a production-ready Python framework for exploring, annotating, and managing data in NLP projects.

✨A Python framework to explore, label, and monitor data for NLP projects

Recognai 1.5k Jan 02, 2023
:house_with_garden: Fast & easy transfer learning for NLP. Harvesting language models for the industry. Focus on Question Answering.

(Framework for Adapting Representation Models) What is it? FARM makes Transfer Learning with BERT & Co simple, fast and enterprise-ready. It's built u

deepset 1.6k Dec 27, 2022
BPEmb is a collection of pre-trained subword embeddings in 275 languages, based on Byte-Pair Encoding (BPE) and trained on Wikipedia.

BPEmb is a collection of pre-trained subword embeddings in 275 languages, based on Byte-Pair Encoding (BPE) and trained on Wikipedia. Its intended use is as input for neural models in natural languag

Benjamin Heinzerling 1.1k Jan 03, 2023
Implementation of ProteinBERT in Pytorch

ProteinBERT - Pytorch (wip) Implementation of ProteinBERT in Pytorch. Original Repository Install $ pip install protein-bert-pytorch Usage import torc

Phil Wang 92 Dec 25, 2022
Host your own GPT-3 Discord bot

GPT3 Discord Bot Host your own GPT-3 Discord bot i'd host and make the bot invitable myself, however GPT3 terms of service prohibit public use of GPT3

[something hillarious here] 8 Jan 07, 2023
Signature remover is a NLP based solution which removes email signatures from the rest of the text.

Signature Remover Signature remover is a NLP based solution which removes email signatures from the rest of the text. It helps to enchance data conten

Forges Alterway 8 Jan 06, 2023
Creating a python chatbot that Starbucks users can text to place an order + help cut wait time of a normal coffee.

Creating a python chatbot that Starbucks users can text to place an order + help cut wait time of a normal coffee.

2 Jan 20, 2022
End-2-end speech synthesis with recurrent neural networks

Introduction New: Interactive demo using Google Colaboratory can be found here TTS-Cube is an end-2-end speech synthesis system that provides a full p

Tiberiu Boros 214 Dec 07, 2022
Topic Modelling for Humans

gensim – Topic Modelling in Python Gensim is a Python library for topic modelling, document indexing and similarity retrieval with large corpora. Targ

RARE Technologies 13.8k Jan 02, 2023
A simple word search made in python

Word Search Puzzle A simple word search made in python Usage $ python3 main.py -h usage: main.py [-h] [-c] [-f FILE] Generates a word s

Magoninho 16 Mar 10, 2022
Weaviate demo with the text2vec-openai module

Weaviate demo with the text2vec-openai module This repository contains an example of how to use the Weaviate text2vec-openai module. When using this d

SeMI Technologies 11 Nov 11, 2022
This is the code for the EMNLP 2021 paper AEDA: An Easier Data Augmentation Technique for Text Classification

The baseline code is for EDA: Easy Data Augmentation techniques for boosting performance on text classification tasks

Akbar Karimi 81 Dec 09, 2022
Crowd sourced training data for Rasa NLU models

NLU Training Data Crowd-sourced training data for the development and testing of Rasa NLU models. If you're interested in grabbing some data feel free

Rasa 169 Dec 26, 2022
novel deep learning research works with PaddlePaddle

Research 发布基于飞桨的前沿研究工作,包括CV、NLP、KG、STDM等领域的顶会论文和比赛冠军模型。 目录 计算机视觉(Computer Vision) 自然语言处理(Natrual Language Processing) 知识图谱(Knowledge Graph) 时空数据挖掘(Spa

1.5k Jan 03, 2023
aMLP Transformer Model for Japanese

aMLP-japanese Japanese aMLP Pretrained Model aMLPとは、Liu, Daiらが提案する、Transformerモデルです。 ざっくりというと、BERTの代わりに使えて、より性能の良いモデルです。 詳しい解説は、こちらの記事などを参考にしてください。 この

tanreinama 13 Aug 11, 2022
Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge

Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge This is an implementation of the paper,

Mutian He 19 Oct 14, 2022
BiNE: Bipartite Network Embedding

BiNE: Bipartite Network Embedding This repository contains the demo code of the paper: BiNE: Bipartite Network Embedding. Ming Gao, Leihui Chen, Xiang

leihuichen 214 Nov 24, 2022
Open source annotation tool for machine learning practitioners.

doccano doccano is an open source text annotation tool for humans. It provides annotation features for text classification, sequence labeling and sequ

7.1k Jan 01, 2023