Multi Task Vision and Language

Overview

12-in-1: Multi-Task Vision and Language Representation Learning

Please cite the following if you use this code. Code and pre-trained models for 12-in-1: Multi-Task Vision and Language Representation Learning:

@InProceedings{Lu_2020_CVPR,
author = {Lu, Jiasen and Goswami, Vedanuj and Rohrbach, Marcus and Parikh, Devi and Lee, Stefan},
title = {12-in-1: Multi-Task Vision and Language Representation Learning},
booktitle = {The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2020}
}

and ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks:

@inproceedings{lu2019vilbert,
  title={Vilbert: Pretraining task-agnostic visiolinguistic representations for vision-and-language tasks},
  author={Lu, Jiasen and Batra, Dhruv and Parikh, Devi and Lee, Stefan},
  booktitle={Advances in Neural Information Processing Systems},
  pages={13--23},
  year={2019}
}

Repository Setup

  1. Create a fresh conda environment, and install all dependencies.
conda create -n vilbert-mt python=3.6
conda activate vilbert-mt
git clone --recursive https://github.com/facebookresearch/vilbert-multi-task.git
cd vilbert-multi-task
pip install -r requirements.txt
  1. Install pytorch
conda install pytorch torchvision cudatoolkit=10.0 -c pytorch
  1. Install apex, follows https://github.com/NVIDIA/apex

  2. Install this codebase as a package in this environment.

python setup.py develop

Data Setup

Check README.md under data for more details.

Visiolinguistic Pre-training and Multi Task Training

Pretraining on Conceptual Captions

python train_concap.py --bert_model bert-base-uncased --config_file config/bert_base_6layer_6conect.json --train_batch_size 512 --objective 1 --file_path <path_to_extracted_cc_features>

Download link

Multi-task Training

python train_tasks.py --bert_model bert-base-uncased --from_pretrained <pretrained_model_path> --config_file config/bert_base_6layer_6conect.json --tasks 1-2-4-7-8-9-10-11-12-13-15-17 --lr_scheduler 'warmup_linear' --train_iter_gap 4 --task_specific_tokens --save_name multi_task_model

Download link

Fine-tune from Multi-task trained model

python train_tasks.py --bert_model bert-base-uncased --from_pretrained <multi_task_model_path> --config_file config/bert_base_6layer_6conect.json --tasks 1 --lr_scheduler 'warmup_linear' --train_iter_gap 4 --task_specific_tokens --save_name finetune_from_multi_task_model

License

vilbert-multi-task is licensed under MIT license available in LICENSE file.

Owner
Meta Research
Meta Research
Official codebase for Can Wikipedia Help Offline Reinforcement Learning?

Official codebase for Can Wikipedia Help Offline Reinforcement Learning?

Machel Reid 82 Dec 19, 2022
This repository contains examples of Task-Informed Meta-Learning

Task-Informed Meta-Learning This repository contains examples of Task-Informed Meta-Learning (paper). We consider two tasks: Crop Type Classification

10 Dec 19, 2022
Training and evaluation codes for the BertGen paper (ACL-IJCNLP 2021)

BERTGEN This repository is the implementation of the paper "BERTGEN: Multi-task Generation through BERT" (https://arxiv.org/abs/2106.03484). The codeb

<a href=[email protected]"> 9 Oct 26, 2022
Winner system (DAMO-NLP) of SemEval 2022 MultiCoNER shared task over 10 out of 13 tracks.

KB-NER: a Knowledge-based System for Multilingual Complex Named Entity Recognition The code is for the winner system (DAMO-NLP) of SemEval 2022 MultiC

116 Dec 27, 2022
A Python script which randomly chooses and prints a file from a directory.

___ ____ ____ _ __ ___ / _ \ | _ \ | _ \ ___ _ __ | '__| / _ \ | |_| || | | || | | | / _ \| '__| | | | __/ | _ || |_| || |_| || __

yesmaybenookay 0 Aug 06, 2021
An Open-Source Package for Neural Relation Extraction (NRE)

OpenNRE We have a DEMO website (http://opennre.thunlp.ai/). Try it out! OpenNRE is an open-source and extensible toolkit that provides a unified frame

THUNLP 3.9k Jan 03, 2023
File-based TF-IDF: Calculates keywords in a document, using a word corpus.

File-based TF-IDF Calculates keywords in a document, using a word corpus. Why? Because I found myself with hundreds of plain text files, with no way t

Jakob Lindskog 1 Feb 11, 2022
A complete NLP guideline for enthusiasts

NLP-NINJA A complete guide for Natural Language Processing in Python Table of Contents S.No. Topic Level Meaning 1 Tokenization 🤍 Beginner 2 Stemming

MAINAK CHAUDHURI 22 Dec 27, 2022
Code Implementation of "Learning Span-Level Interactions for Aspect Sentiment Triplet Extraction".

Span-ASTE: Learning Span-Level Interactions for Aspect Sentiment Triplet Extraction ***** New March 31th, 2022: Scikit-Style API for Easy Usage *****

Chia Yew Ken 111 Dec 23, 2022
Repository for the paper: VoiceMe: Personalized voice generation in TTS

🗣 VoiceMe: Personalized voice generation in TTS Abstract Novel text-to-speech systems can generate entirely new voices that were not seen during trai

Pol van Rijn 80 Dec 29, 2022
KoBERT - Korean BERT pre-trained cased (KoBERT)

KoBERT KoBERT Korean BERT pre-trained cased (KoBERT) Why'?' Training Environment Requirements How to install How to use Using with PyTorch Using with

SK T-Brain 1k Jan 02, 2023
AIDynamicTextReader - A simple dynamic text reader based on Artificial intelligence

AI Dynamic Text Reader: This is a simple dynamic text reader based on Artificial

Md. Rakibul Islam 1 Jan 18, 2022
**NSFW** A chatbot based on GPT2-chitchat

DangBot -- 好怪哦,再来一句 卡群怪话bot,powered by GPT2 for Chinese chitchat Training Example: python train.py --lr 5e-2 --epochs 30 --max_len 300 --batch_size 8

Tommy Yang 11 Jul 21, 2022
Code for "Parallel Instance Query Network for Named Entity Recognition", accepted at ACL 2022.

README Code for Two-stage Identifier: "Parallel Instance Query Network for Named Entity Recognition", accepted at ACL 2022. For details of the model a

Yongliang Shen 45 Nov 29, 2022
Code for "Generative adversarial networks for reconstructing natural images from brain activity".

Reconstruct handwritten characters from brains using GANs Example code for the paper "Generative adversarial networks for reconstructing natural image

K. Seeliger 2 May 17, 2022
fastNLP: A Modularized and Extensible NLP Framework. Currently still in incubation.

fastNLP fastNLP是一款轻量级的自然语言处理(NLP)工具包,目标是快速实现NLP任务以及构建复杂模型。 fastNLP具有如下的特性: 统一的Tabular式数据容器,简化数据预处理过程; 内置多种数据集的Loader和Pipe,省去预处理代码; 各种方便的NLP工具,例如Embedd

fastNLP 2.8k Jan 01, 2023
Speech Recognition for Uyghur using Speech transformer

Speech Recognition for Uyghur using Speech transformer Training: this model using CTC loss and Cross Entropy loss for training. Download pretrained mo

Uyghur 11 Nov 17, 2022
Perform sentiment analysis on textual data that people generally post on websites like social networks and movie review sites.

Sentiment Analyzer The goal of this project is to perform sentiment analysis on textual data that people generally post on websites like social networ

Madhusudan.C.S 53 Mar 01, 2022
Athena is an open-source implementation of end-to-end speech processing engine.

Athena is an open-source implementation of end-to-end speech processing engine. Our vision is to empower both industrial application and academic research on end-to-end models for speech processing.

Ke Technologies 34 Sep 08, 2022
a chinese segment base on crf

Genius Genius是一个开源的python中文分词组件,采用 CRF(Conditional Random Field)条件随机场算法。 Feature 支持python2.x、python3.x以及pypy2.x。 支持简单的pinyin分词 支持用户自定义break 支持用户自定义合并词

duanhongyi 237 Nov 04, 2022