Implementation of ProteinBERT in Pytorch

Overview

ProteinBERT - Pytorch (wip)

Implementation of ProteinBERT in Pytorch.

Original Repository

Install

$ pip install protein-bert-pytorch

Usage

import torch
from protein_bert_pytorch import ProteinBERT

model = ProteinBERT(
    num_tokens = 21,
    num_annotation = 8943,
    dim = 512,
    dim_global = 256,
    depth = 6,
    narrow_conv_kernel = 9,
    wide_conv_kernel = 9,
    wide_conv_dilation = 5,
    attn_heads = 8,
    attn_dim_head = 64
)

seq = torch.randint(0, 21, (2, 2048))
mask = torch.ones(2, 2048).bool()
annotation = torch.randint(0, 1, (2, 8943)).float()

seq_logits, annotation_logits = model(seq, annotation, mask = mask) # (2, 2048, 21), (2, 8943)

Citations

@article {Brandes2021.05.24.445464,
    author      = {Brandes, Nadav and Ofer, Dan and Peleg, Yam and Rappoport, Nadav and Linial, Michal},
    title       = {ProteinBERT: A universal deep-learning model of protein sequence and function},
    year        = {2021},
    doi         = {10.1101/2021.05.24.445464},
    publisher   = {Cold Spring Harbor Laboratory},
    URL         = {https://www.biorxiv.org/content/early/2021/05/25/2021.05.24.445464},
    eprint      = {https://www.biorxiv.org/content/early/2021/05/25/2021.05.24.445464.full.pdf},
    journal     = {bioRxiv}
}
You might also like...
A PyTorch implementation of paper
A PyTorch implementation of paper "Learning Shared Semantic Space for Speech-to-Text Translation", ACL (Findings) 2021

Chimera: Learning Shared Semantic Space for Speech-to-Text Translation This is a Pytorch implementation for the "Chimera" paper Learning Shared Semant

PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation
PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation

StyleSpeech - PyTorch Implementation PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation. Status (2021.06.09

PyTorch implementation and pretrained models for XCiT models. See XCiT: Cross-Covariance Image Transformer
PyTorch implementation and pretrained models for XCiT models. See XCiT: Cross-Covariance Image Transformer

Cross-Covariance Image Transformer (XCiT) PyTorch implementation and pretrained models for XCiT models. See XCiT: Cross-Covariance Image Transformer L

A pytorch implementation of the ACL2019 paper
A pytorch implementation of the ACL2019 paper "Simple and Effective Text Matching with Richer Alignment Features".

RE2 This is a pytorch implementation of the ACL 2019 paper "Simple and Effective Text Matching with Richer Alignment Features". The original Tensorflo

PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.
PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

VAENAR-TTS - PyTorch Implementation PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

A Pytorch implementation of
A Pytorch implementation of "Splitter: Learning Node Representations that Capture Multiple Social Contexts" (WWW 2019).

Splitter ⠀⠀ A PyTorch implementation of Splitter: Learning Node Representations that Capture Multiple Social Contexts (WWW 2019). Abstract Recent inte

Simple Text-Generator with OpenAI gpt-2 Pytorch Implementation

GPT2-Pytorch with Text-Generator Better Language Models and Their Implications Our model, called GPT-2 (a successor to GPT), was trained simply to pre

PyTorch original implementation of Cross-lingual Language Model Pretraining.
PyTorch original implementation of Cross-lingual Language Model Pretraining.

XLM NEW: Added XLM-R model. PyTorch original implementation of Cross-lingual Language Model Pretraining. Includes: Monolingual language model pretrain

A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis

WaveGlow A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis Quick Start: Install requirements: pip install

Comments
  • bugFix: x and y not on the same device when Learner is trained on GPU

    bugFix: x and y not on the same device when Learner is trained on GPU

    When

    seq        = torch.randint(0, 21, (2, 2048)).cuda()
    annotation = torch.randint(0, 1, (2, 8943)).float().cuda()
    mask       = torch.ones(2, 2048).bool().cuda()
    
    learner.cuda()
    
    loss = learner(seq, annotation, mask = mask) # (2, 2048, 21), (2, 8943)
    
    

    OUTPUT

    ---------------------------------------------------------------------------
    RuntimeError                              Traceback (most recent call last)
    <ipython-input-2-60892e498570> in <module>
          4 learner.cuda()
          5 
    ----> 6 loss = learner(seq, annotation, mask = mask) # (2, 2048, 21), (2, 8943)
    
    ~/data/.conda/envs/torch/lib/python3.8/site-packages/torch/nn/modules/module.py in _call_impl(self, *input, **kwargs)
        887             result = self._slow_forward(*input, **kwargs)
        888         else:
    --> 889             result = self.forward(*input, **kwargs)
        890         for hook in itertools.chain(
        891                 _global_forward_hooks.values(),
    
    /mnt/5280b/wwang/proteinbert/protein_bert_pytorch.py in forward(self, seq, annotation, mask)
        365 
        366         for token_id in self.exclude_token_ids:
    --> 367             random_replace_token_prob_mask = random_replace_token_prob_mask & (random_tokens != token_id)  # make sure you never substitute a token with an excluded token type (pad, start, end)
        368 
        369         # noise sequence
    
    RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu!
    
    opened by wilmerwang 0
  • How to use this bert version to use the pretrianed model?

    How to use this bert version to use the pretrianed model?

    Hi guys, thanks for great work. I'm trying to use this pytorch version protein-bert to use the pre-trained model 'ftp://ftp.cs.huji.ac.il/users/nadavb/protein_bert/epoch_92400_sample_23500000.pkl', but have no clues at all. Could you please give some suggestions? Thank you so much!

    opened by Y-H-Joe 1
Owner
Phil Wang
Working with Attention
Phil Wang
Black for Python docstrings and reStructuredText (rst).

Style-Doc Style-Doc is Black for Python docstrings and reStructuredText (rst). It can be used to format docstrings (Google docstring format) in Python

Telekom Open Source Software 13 Oct 24, 2022
Code for the paper "Language Models are Unsupervised Multitask Learners"

Status: Archive (code is provided as-is, no updates expected) gpt-2 Code and models from the paper "Language Models are Unsupervised Multitask Learner

OpenAI 16.1k Jan 08, 2023
PyTorch implementation of Microsoft's text-to-speech system FastSpeech 2: Fast and High-Quality End-to-End Text to Speech.

An implementation of Microsoft's "FastSpeech 2: Fast and High-Quality End-to-End Text to Speech"

Chung-Ming Chien 1k Dec 30, 2022
Train and use generative text models in a few lines of code.

blather Train and use generative text models in a few lines of code. To see blather in action check out the colab notebook! Installation Use the packa

Dan Carroll 16 Nov 07, 2022
BERN2: an advanced neural biomedical namedentity recognition and normalization tool

BERN2 We present BERN2 (Advanced Biomedical Entity Recognition and Normalization), a tool that improves the previous neural network-based NER tool by

DMIS Laboratory - Korea University 99 Jan 06, 2023
A single model that parses Universal Dependencies across 75 languages.

A single model that parses Universal Dependencies across 75 languages. Given a sentence, jointly predicts part-of-speech tags, morphology tags, lemmas, and dependency trees.

Dan Kondratyuk 189 Nov 29, 2022
Turn clang-tidy warnings and fixes to comments in your pull request

clang-tidy pull request comments A GitHub Action to post clang-tidy warnings and suggestions as review comments on your pull request. What platisd/cla

Dimitris Platis 30 Dec 13, 2022
Simple multilingual lemmatizer for Python, especially useful for speed and efficiency

Simplemma: a simple multilingual lemmatizer for Python Purpose Lemmatization is the process of grouping together the inflected forms of a word so they

Adrien Barbaresi 70 Dec 29, 2022
Pytorch version of BERT-whitening

BERT-whitening This is the Pytorch implementation of "Whitening Sentence Representations for Better Semantics and Faster Retrieval". BERT-whitening is

Weijie Liu 255 Dec 27, 2022
translate using your voice

speech-to-text-translator Usage translate using your voice description this project makes translating a word easy, all you have to do is speak and...

1 Oct 18, 2021
Code for the project carried out fulfilling the course requirements for Fall 2021 NLP at NYU

Introduction Fairseq(-py) is a sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization,

Sai Himal Allu 1 Apr 25, 2022
Jarvis is a simple Chatbot with a GUI capable of chatting and retrieving information and daily news from the internet for it's user.

J.A.R.V.I.S Kindly consider starring this repository if you like the program :-) What/Who is J.A.R.V.I.S? J.A.R.V.I.S is an chatbot written that is bu

Epicalable 50 Dec 31, 2022
Transfer Learning from Speaker Verification to Multispeaker Text-To-Speech Synthesis (SV2TTS)

This repository is an implementation of Transfer Learning from Speaker Verification to Multispeaker Text-To-Speech Synthesis (SV2TTS) with a vocoder that works in real-time. Feel free to check my the

Corentin Jemine 38.5k Jan 03, 2023
Python interface for converting Penn Treebank trees to Stanford Dependencies and Universal Depenencies

PyStanfordDependencies Python interface for converting Penn Treebank trees to Universal Dependencies and Stanford Dependencies. Example usage Start by

David McClosky 64 May 08, 2022
Pre-training BERT masked language models with custom vocabulary

Pre-training BERT Masked Language Models (MLM) This repository contains the method to pre-train a BERT model using custom vocabulary. It was used to p

Stella Douka 14 Nov 02, 2022
Using context-free grammar formalism to parse English sentences to determine their structure to help computer to better understand the meaning of the sentence.

Sentance Parser Executing the Program Make sure Python 3.6+ is installed. Install requirements $ pip install requirements.txt Run the program:

Vaibhaw 12 Sep 28, 2022
Use Tensorflow2.7.0 Build OpenAI'GPT-2

TF2_GPT-2 Use Tensorflow2.7.0 Build OpenAI'GPT-2 使用最新tensorflow2.7.0构建openai官方的GPT-2 NLP模型 优点 使用无监督技术 拥有大量词汇量 可实现续写(堪比“xx梦续写”) 实现对话后续将应用于FloatTech的Bot

Watermelon 9 Sep 13, 2022
Biterm Topic Model (BTM): modeling topics in short texts

Biterm Topic Model Bitermplus implements Biterm topic model for short texts introduced by Xiaohui Yan, Jiafeng Guo, Yanyan Lan, and Xueqi Cheng. Actua

Maksim Terpilowski 49 Dec 30, 2022
Library for fast text representation and classification.

fastText fastText is a library for efficient learning of word representations and sentence classification. Table of contents Resources Models Suppleme

Facebook Research 24.1k Jan 05, 2023
Grover is a model for Neural Fake News -- both generation and detectio

Grover is a model for Neural Fake News -- both generation and detection. However, it probably can also be used for other generation tasks.

Rowan Zellers 856 Dec 24, 2022