A pytorch implementation of the ACL2019 paper "Simple and Effective Text Matching with Richer Alignment Features".

Overview

RE2

This is a pytorch implementation of the ACL 2019 paper "Simple and Effective Text Matching with Richer Alignment Features". The original Tensorflow implementation: https://github.com/alibaba-edu/simple-effective-text-matching.

Quick Links

Simple and Effective Text Matching

RE2 is a fast and strong neural architecture for general purpose text matching applications. In a text matching task, a model takes two text sequences as input and predicts their relationship. This method aims to explore what is sufficient for strong performance in these tasks. It simplifies many slow components which are previously considered as core building blocks in text matching, while keeping three key features directly available for inter-sequence alignment: original point-wise features, previous aligned features, and contextual features.

RE2 achieves performance on par with the state of the art on four benchmark datasets: SNLI, SciTail, Quora and WikiQA, across tasks of natural language inference, paraphrase identification and answer selection with no or few task-specific adaptations. It has at least 6 times faster inference speed compared to similarly performed models.

The following table lists major experiment results. The paper reports the average and standard deviation of 10 runs. Inference time (in seconds) is measured by processing a batch of 8 pairs of length 20 on Intel i7 CPUs. The computation time of POS features used by CSRAN and DIIN is not included.

Model SNLI SciTail Quora WikiQA Inference Time
BiMPM 86.9 - 88.2 0.731 0.05
ESIM 88.0 70.6 - - -
DIIN 88.0 - 89.1 - 1.79
CSRAN 88.7 86.7 89.2 - 0.28
RE2 88.9±0.1 86.0±0.6 89.2±0.2 0.7618 ±0.0040 0.03~0.05

Refer to the paper for more details of the components and experiment results.

Setup

Data used in the paper are prepared as follows:

SNLI

  • Download and unzip SNLI (pre-processed by Tay et al.) to data/orig.
  • Unzip all zip files in the "data/orig/SNLI" folder. (cd data/orig/SNLI && gunzip *.gz)
  • cd data && python prepare_snli.py

SciTail

  • Download and unzip SciTail dataset to data/orig.
  • cd data && python prepare_scitail.py

Quora

  • Download and unzip Quora dataset (pre-processed by Wang et al.) to data/orig.
  • cd data && python prepare_quora.py

WikiQA

  • Download and unzip WikiQA to data/orig.
  • cd data && python prepare_wikiqa.py
  • Download and unzip evaluation scripts. Use the make -B command to compile the source files in qg-emnlp07-data/eval/trec_eval-8.0. Move the binary file "trec_eval" to resources/.

Usage

To train a new text matching model, run the following command:

python train.py $config_file.json5

Example configuration files are provided in configs/:

  • configs/main.json5: replicate the main experiment result in the paper.
  • configs/robustness.json5: robustness checks
  • configs/ablation.json5: ablation study

The instructions to write your own configuration files:

[
    {
        name: 'exp1', // name of your experiment, can be the same across different data
        __parents__: [
            'default', // always put the default on top
            'data/quora', // data specific configurations in `configs/data`
            // 'debug', // use "debug" to quick debug your code  
        ],
        __repeat__: 5,  // how may repetitions you want
        blocks: 3, // other configurations for this experiment 
    },
    // multiple configurations are executed sequentially
    {
        name: 'exp2', // results under the same name will be overwritten
        __parents__: [
            'default', 
            'data/quora',
        ],
        __repeat__: 5,  
        blocks: 4, 
    }
]

To check the configurations only, use

python train.py $config_file.json5 --dry

To evaluate an existed model, use python evaluate.py $model_path $data_file, here's an example:

python evaluate.py models/snli/benchmark/best.pt data/snli/train.txt 
python evaluate.py models/snli/benchmark/best.pt data/snli/test.txt 

Note that multi-GPU training is not yet supported in the pytorch implementation. A single 16G GPU is sufficient for training when blocks < 5 with hidden size 200 and batch size 512. All the results reported in the paper except the robustness checks can be reproduced with a single 16G GPU.

Citation

Please cite the ACL paper if you use RE2 in your work:

@inproceedings{yang2019simple,
  title={Simple and Effective Text Matching with Richer Alignment Features},
  author={Yang, Runqi and Zhang, Jianhai and Gao, Xing and Ji, Feng and Chen, Haiqing},
  booktitle={Association for Computational Linguistics (ACL)},
  year={2019}
}

License

This project is under Apache License 2.0.

Paradigm Shift in NLP - "Paradigm Shift in Natural Language Processing".

Paradigm Shift in NLP Welcome to the webpage for "Paradigm Shift in Natural Language Processing". Some resources of the paper are constantly maintaine

Tianxiang Sun 41 Dec 30, 2022
Applying "Load What You Need: Smaller Versions of Multilingual BERT" to LaBSE

smaller-LaBSE LaBSE(Language-agnostic BERT Sentence Embedding) is a very good method to get sentence embeddings across languages. But it is hard to fi

Jeong Ukjae 13 Sep 02, 2022
A Word Level Transformer layer based on PyTorch and 🤗 Transformers.

Transformer Embedder A Word Level Transformer layer based on PyTorch and 🤗 Transformers. How to use Install the library from PyPI: pip install transf

Riccardo Orlando 27 Nov 20, 2022
Natural language processing summarizer using 3 state of the art Transformer models: BERT, GPT2, and T5

NLP-Summarizer Natural language processing summarizer using 3 state of the art Transformer models: BERT, GPT2, and T5 This project aimed to provide in

Samuel Sharkey 1 Feb 07, 2022
Nested Named Entity Recognition for Chinese Biomedical Text

CBio-NAMER CBioNAMER (Nested nAMed Entity Recognition for Chinese Biomedical Text) is our method used in CBLUE (Chinese Biomedical Language Understand

8 Dec 25, 2022
GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot, a language model

GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot, a language model -- based on GPT-3, called GPT-Codex -- that is fine-tuned on publicly available code from GitHub.

Nathan Cooper 2.3k Jan 01, 2023
The projects lets you extract glossary words and their definitions from a given piece of text automatically using NLP techniques

Unsupervised technique to Glossary and Definition Extraction Code Files GPT2-DefinitionModel.ipynb - GPT-2 model for definition generation. Data_Gener

Prakhar Mishra 28 May 25, 2021
Need: Image Search With Python

Need: Image Search The problem is that a user needs to search for a specific ima

Surya Komandooru 1 Dec 30, 2021
Collection of scripts to pinpoint obfuscated code

Obfuscation Detection (v1.0) Author: Tim Blazytko Automatically detect control-flow flattening and other state machines Description: Scripts and binar

Tim Blazytko 230 Nov 26, 2022
Textpipe: clean and extract metadata from text

textpipe: clean and extract metadata from text textpipe is a Python package for converting raw text in to clean, readable text and extracting metadata

Textpipe 298 Nov 21, 2022
CYGNUS, the Cynical AI, combines snarky responses with uncanny aggression.

New & (hopefully) Improved CYGNUS with several API updates, user updates, and online/offline operations added!!!

Simran Farrukh 0 Mar 28, 2022
topic modeling on unstructured data in Space news articles retrieved from the Guardian (UK) newspaper using API

NLP Space News Topic Modeling Photos by nasa.gov (1, 2, 3, 4, 5) and extremetech.com Table of Contents Project Idea Data acquisition Primary data sour

edesz 1 Jan 03, 2022
PyTorch Implementation of "Bridging Pre-trained Language Models and Hand-crafted Features for Unsupervised POS Tagging" (Findings of ACL 2022)

Feature_CRF_AE Feature_CRF_AE provides a implementation of Bridging Pre-trained Language Models and Hand-crafted Features for Unsupervised POS Tagging

Jacob Zhou 6 Apr 29, 2022
Code for EMNLP 2021 main conference paper "Text AutoAugment: Learning Compositional Augmentation Policy for Text Classification"

Code for EMNLP 2021 main conference paper "Text AutoAugment: Learning Compositional Augmentation Policy for Text Classification"

LancoPKU 105 Jan 03, 2023
xFormers is a modular and field agnostic library to flexibly generate transformer architectures by interoperable and optimized building blocks.

Description xFormers is a modular and field agnostic library to flexibly generate transformer architectures by interoperable and optimized building bl

Facebook Research 2.3k Jan 08, 2023
PyTorch implementation of the NIPS-17 paper "Poincaré Embeddings for Learning Hierarchical Representations"

Poincaré Embeddings for Learning Hierarchical Representations PyTorch implementation of Poincaré Embeddings for Learning Hierarchical Representations

Facebook Research 1.6k Dec 29, 2022
Yuqing Xie 2 Feb 17, 2022
Crowd sourced training data for Rasa NLU models

NLU Training Data Crowd-sourced training data for the development and testing of Rasa NLU models. If you're interested in grabbing some data feel free

Rasa 169 Dec 26, 2022
Parrot is a paraphrase based utterance augmentation framework purpose built to accelerate training NLU models

Parrot is a paraphrase based utterance augmentation framework purpose built to accelerate training NLU models. A paraphrase framework is more than just a paraphrasing model.

Prithivida 681 Jan 01, 2023
Code for the ACL 2021 paper "Structural Guidance for Transformer Language Models"

Structural Guidance for Transformer Language Models This repository accompanies the paper, Structural Guidance for Transformer Language Models, publis

International Business Machines 10 Dec 14, 2022