Paradigm Shift in NLP - "Paradigm Shift in Natural Language Processing".

Overview

Paradigm Shift in NLP

Welcome to the webpage for "Paradigm Shift in Natural Language Processing". Some resources of the paper are constantly maintained here, such as a full list of papers of paradigm shift, an interactive Sankey diagram to depict the trend of paradigm shift, etc.

What is paradigm shift?

First of all, what is paradigm, and what is paradigm shift?

Paradigm is the general framework to model a class of tasks. For example, sequence labeling (SeqLab) is a popular paradigm to solve named entity recognition (NER). We summarize the mainstream paradigms that are widely used for common NLP tasks as: Class, Matching, SeqLab, MRC, Seq2Seq, Seq2ASeq, (M)LM.

Paradigm shift is a phenomena of solving a task that is usually solved with some paradigm with another paradigm. For example, Li et al. (2020) uses the MRC paradigm to solve NER, which is previously solved with SeqLab, then we can say that the paradigm of NER shifted from SeqLab to MRC.

The figure below shows the observed shift (or transfer) of the seven paradigms in recent years.

Paradigm shift in NLP tasks

We collect the papers of paradigm shift in the table below, which is an extension of the Table 1 in our original paper. This table will be constantly updated.

Task Class Matching SeqLab MRC Seq2Seq Seq2ASeq (M)LM
TC Kim 2014;
Liu et al. 2016;
Devlin et al. 2019
Chai et al. 2020;
Yin et al. 2020;
Wang et al. 2021;
Yang et al. 2018 Brown et al. 2020;
Schick&Schutze 2021;
Schick&Schutze 2021;
Gao et al. 2021
NLI Devlin et al. 2019 Chen et al. 2017 McCann et al. 2018 Schick&Schutze 2021;
Schick&Schutze 2021;
Gao et al. 2021
NER Xia et al. 2019;
Fisher&Vlachos 2019;
Yu et al. 2020;
Fu et al. 2021
Ma&Hovy 2016;
Lample 2016
Li et al. 2020 Yan et al. 2021 Lample et al. 2016;
Dai et al. 2020
Ma et al. 2021
ABSA Wang et al. 2016 Sun et al. 2019 Mao et al. 2021
Chen et al. 2021
Yan et al. 2021;
Zhang et al. 2021
Li et al. 2021
RE Zeng et al. 2014 Levy et al. 2017;
Li et al. 2019;
Zhao et al. 2020
Han et al. 2021
Summ Zhong et al. 2020 Cheng&Lapata 2016 McCann et al. 2018 Aghajanyan et al. 2021
Parsing Rodríguez&Vilares 2018;
Strzyz et al. 2019;
Vilares&Rodríguez 2020;
Vacareanu et al. 2020;
Gan et al. 2021 Vinyals et al. 2015;
Li et al. 2018;
Rongali et al. 2020
Chen et al. 2014;
Dyer et al. 2015;
Choe&Charniak 2016

Trends

To intuitively depict the trend of paradigm shift in NLP, we also draw an interactive Sankey diagram, which is an extension of the Figure 2 in our original paper. Also, this diagram is constantly updated as the table above changed.

Contributing

This line of research is difficult to be comprehensively surveyed, so welcome any additions, modifications, and suggestions! Please feel free to submit pull request or directly contact me.

Citation

If you find this webpage or the paper helpful to your research, please cite our paper:

@article{sun2021paradigmshift,
  title={Paradigm Shift in Natural Language Processing}, 
  author={Tianxiang Sun and Xiangyang Liu and Xipeng Qiu and Xuanjing Huang},
  journal={arXiv preprint arXiv:2109.12575},
  year={2021}
}
Owner
Tianxiang Sun
@FudanNLP
Tianxiang Sun
DELTA is a deep learning based natural language and speech processing platform.

DELTA - A DEep learning Language Technology plAtform What is DELTA? DELTA is a deep learning based end-to-end natural language and speech processing p

DELTA 1.5k Dec 26, 2022
Material for GW4SHM workshop, 16/03/2022.

GW4SHM Workshop Wednesday, 16th March 2022 (13:00 – 15:15 GMT): Presented by: Dr. Rhodri Nelson, Imperial College London Project website: https://www.

Devito Codes 1 Mar 16, 2022
Blue Brain text mining toolbox for semantic search and structured information extraction

Blue Brain Search Source Code DOI Data & Models DOI Documentation Latest Release Python Versions License Build Status Static Typing Code Style Securit

The Blue Brain Project 29 Dec 01, 2022
Easy-to-use CPM for Chinese text generation

CPM 项目描述 CPM(Chinese Pretrained Models)模型是北京智源人工智能研究院和清华大学发布的中文大规模预训练模型。官方发布了三种规模的模型,参数量分别为109M、334M、2.6B,用户需申请与通过审核,方可下载。 由于原项目需要考虑大模型的训练和使用,需要安装较为复杂

382 Jan 07, 2023
Baseline code for Korean open domain question answering(ODQA)

Open-Domain Question Answering(ODQA)는 다양한 주제에 대한 문서 집합으로부터 자연어 질의에 대한 답변을 찾아오는 task입니다. 이때 사용자 질의에 답변하기 위해 주어지는 지문이 따로 존재하지 않습니다. 따라서 사전에 구축되어있는 Knowl

VUMBLEB 69 Nov 04, 2022
Fast topic modeling platform

The state-of-the-art platform for topic modeling. Full Documentation User Mailing List Download Releases User survey What is BigARTM? BigARTM is a pow

BigARTM 633 Dec 21, 2022
Unsupervised Language Modeling at scale for robust sentiment classification

** DEPRECATED ** This repo has been deprecated. Please visit Megatron-LM for our up to date Large-scale unsupervised pretraining and finetuning code.

NVIDIA Corporation 1k Nov 17, 2022
Named Entity Recognition API used by TEI Publisher

TEI Publisher Named Entity Recognition API This repository contains the API used by TEI Publisher's web-annotation editor to detect entities in the in

e-editiones.org 14 Nov 15, 2022
PyTorch implementation and pretrained models for XCiT models. See XCiT: Cross-Covariance Image Transformer

Cross-Covariance Image Transformer (XCiT) PyTorch implementation and pretrained models for XCiT models. See XCiT: Cross-Covariance Image Transformer L

Facebook Research 605 Jan 02, 2023
Code associated with the "Data Augmentation using Pre-trained Transformer Models" paper

Data Augmentation using Pre-trained Transformer Models Code associated with the Data Augmentation using Pre-trained Transformer Models paper Code cont

44 Dec 31, 2022
A simple chatbot based on chatterbot that you can use for anything has basic features

Chatbotium A simple chatbot based on chatterbot that you can use for anything has basic features. I have some errors Read the paragraph below: Known b

Herman 1 Feb 16, 2022
NLP Core Library and Model Zoo based on PaddlePaddle 2.0

PaddleNLP 2.0拥有丰富的模型库、简洁易用的API与高性能的分布式训练的能力,旨在为飞桨开发者提升文本建模效率,并提供基于PaddlePaddle 2.0的NLP领域最佳实践。

6.9k Jan 01, 2023
Deal or No Deal? End-to-End Learning for Negotiation Dialogues

Introduction This is a PyTorch implementation of the following research papers: (1) Hierarchical Text Generation and Planning for Strategic Dialogue (

Facebook Research 1.4k Dec 29, 2022
Yet Another Compiler Visualizer

yacv: Yet Another Compiler Visualizer yacv is a tool for visualizing various aspects of typical LL(1) and LR parsers. Check out demo on YouTube to see

Ashutosh Sathe 129 Dec 17, 2022
Pytorch NLP library based on FastAI

Quick NLP Quick NLP is a deep learning nlp library inspired by the fast.ai library It follows the same api as fastai and extends it allowing for quick

Agis pof 283 Nov 21, 2022
Sentence Embeddings with BERT & XLNet

Sentence Transformers: Multilingual Sentence Embeddings using BERT / RoBERTa / XLM-RoBERTa & Co. with PyTorch This framework provides an easy method t

Ubiquitous Knowledge Processing Lab 9.1k Jan 02, 2023
Correctly generate plurals, ordinals, indefinite articles; convert numbers to words

NAME inflect.py - Correctly generate plurals, singular nouns, ordinals, indefinite articles; convert numbers to words. SYNOPSIS import inflect p = in

Jason R. Coombs 762 Dec 29, 2022
Natural Language Processing with transformers

we want to create a repo to illustrate usage of transformers in chinese

Datawhale 763 Dec 27, 2022
Text Normalization(文本正则化)

Text Normalization(文本正则化) 任务描述:通过机器学习算法将英文文本的“手写”形式转换成“口语“形式,例如“6ft”转换成“six feet”等 实验结果 XGBoost + bag-of-words: 0.99159 XGBoost+Weights+rules:0.99002

Jason_Zhang 0 Feb 26, 2022
A library for finding knowledge neurons in pretrained transformer models.

knowledge-neurons An open source repository replicating the 2021 paper Knowledge Neurons in Pretrained Transformers by Dai et al., and extending the t

EleutherAI 96 Dec 21, 2022