[AAAI 21] Curriculum Labeling: Revisiting Pseudo-Labeling for Semi-Supervised Learning

Overview

◥ Curriculum Labeling ◣

Revisiting Pseudo-Labeling for Semi-Supervised Learning

Paola Cascante-Bonilla, Fuwen Tan, Yanjun Qi, Vicente Ordonez.

In the 35th AAAI Conference on Artificial Intelligence. AAAI 2021.

AboutRequirementsTrain/EvalBibtex

About

In this paper we revisit the idea of pseudo-labeling in the context of semi-supervised learning where a learning algorithm has access to a small set of labeled samples and a large set of unlabeled samples. Pseudo-labeling works by applying pseudo-labels to samples in the unlabeled set by using a model trained on the combination of the labeled samples and any previously pseudo-labeled samples, and iteratively repeating this process in a self-training cycle. Current methods seem to have abandoned this approach in favor of consistency regularization methods that train models under a combination of different styles of self-supervised losses on the unlabeled samples and standard supervised losses on the labeled samples. We empirically demonstrate that pseudo-labeling can in fact be competitive with the state-of-the-art, while being more resilient to out-of-distribution samples in the unlabeled set. We identify two key factors that allow pseudo-labeling to achieve such remarkable results (1) applying curriculum learning principles and (2) avoiding concept drift by restarting model parameters before each self-training cycle. We obtain 94.91% accuracy on CIFAR-10 using only 4,000 labeled samples, and 68.87% top-1 accuracy on Imagenet-ILSVRC using only 10% of the labeled samples.


Curriculum Labeling (CL) Algorithm.


Requirements

  • python >= 3.7.7
  • pytorch > 1.5.0
  • torchvision
  • tensorflow-gpu==1.14
  • torchcontrib
  • pytest
  • Download both zca_components.npy and zca_mean.npy. Save them in the main folder (Curriculum-Labeling).

Train

TL;DR

Run the command below to reproduce one of our experiments on CIFAR-10 with WideResNet-28-2:

python main.py --doParallel --seed 821 --nesterov --weight-decay 0.0005 --arch WRN28_2 --batch_size 512 --epochs 700 --lr_rampdown_epochs 750 --add_name WRN28_CIFAR10_AUG_MIX_SWA --mixup --swa

Everything you need to run and evaluate Curriculum Labeling is in main.py. The Wrapper class contains all the main functions to create the model, prepare the dataset, and train your model. The arguments you pass are handled by the Wrapper. For example, if you want to activate the debug mode to sneak-peak the test set scores, you can add the argument --debug when executing python main.py.

The code below shows how to set every step and get ready to train:

import wrapper as super_glue
# all possible parameters are passed to the wrapper as a dictionary
wrapper = super_glue.Wrapper(args_dict)
# one line to prepare datasets
wrapper.prepare_datasets()
# create the model
wrapper.create_network()
# set the hyperparameters
wrapper.set_model_hyperparameters()
# set optimizer (SGD or Adam)
wrapper.set_model_optimizer()
# voilà! really? sure, print the model!
print (wrapper.model)

Then you just have to call the train and evaluate functions:

# train cl
wrapper.train_cl()
# evaluate cl 
wrapper.eval_cl()

Some Arguments and Usage

usage: main.py [-h] [--dataset DATASET] [--num_labeled L]
               [--num_valid_samples V] [--arch ARCH] [--dropout DO]
               [--optimizer OPTIMIZER] [--epochs N] [--start_epoch N] [-b N]
               [--lr LR] [--initial_lr LR] [--lr_rampup EPOCHS]
               [--lr_rampdown_epochs EPOCHS] [--momentum M] [--nesterov]
               [--weight-decay W] [--checkpoint_epochs EPOCHS]
               [--print_freq N] [--pretrained] [--root_dir ROOT_DIR]
               [--data_dir DATA_DIR] [--n_cpus N_CPUS] [--add_name ADD_NAME]
               [--doParallel] [--use_zca] [--pretrainedEval]
               [--pretrainedFrom PATH] [-e] [-evaluateLabeled]
               [-getLabeledResults]
               [--set_labeled_classes SET_LABELED_CLASSES]
               [--set_unlabeled_classes SET_UNLABELED_CLASSES]
               [--percentiles_holder PERCENTILES_HOLDER] [--static_threshold]
               [--seed SEED] [--augPolicy AUGPOLICY] [--swa]
               [--swa_start SWA_START] [--swa_freq SWA_FREQ] [--mixup]
               [--alpha ALPHA] [--debug]

Detailed list of Arguments

arg default help
--help show this help message and exit
--dataset cifar10 dataset: cifar10, svhn or imagenet
--num_labeled 400 number of labeled samples per class
--num_valid_samples 500 number of validation samples per class
--arch cnn13 either of cnn13, WRN28_2, resnet50
--dropout 0.0 dropout rate
--optimizer sgd optimizer we are going to use. can be either adam of sgd
--epochs 100 number of total epochs to run
--start_epoch 0 manual epoch number (useful on restarts)
--batch_size 100 mini-batch size (default: 100)
--learning-rate 0.1 max learning rate
--initial_lr 0.0 initial learning rate when using linear rampup
--lr_rampup 0 length of learning rate rampup in the beginning
--lr_rampdown_epochs 150 length of learning rate cosine rampdown (>= length of training): the epoch at which learning rate reaches to zero
--momentum 0.9 momentum
--nesterov use nesterov momentum
--wd 0.0001 weight decay (default: 1e-4)
--checkpoint_epochs 500 checkpoint frequency (by epoch)
--print_freq 100 print frequency (default: 10)
--pretrained use pre-trained model
--root_dir experiments folder where results are to be stored
--data_dir /data/cifar10/ folder where data is stored
--n_cpus 12 number of cpus for data loading
--add_name SSL_Test Name of your folder to store the experiment results
--doParallel use DataParallel
--use_zca use zca whitening
--pretrainedEval use pre-trained model
--pretrainedFrom /full/path/ path to pretrained results (default: none)
--set_labeled_classes 0,1,2,3,4,5,6,7,8,9 set the classes to treat as the label set
--set_unlabeled_classes 0,1,2,3,4,5,6,7,8,9 set the classes to treat as the unlabeled set
--percentiles_holder 20 mu parameter - sets the steping percentile for thresholding after each iteration
--static_threshold use static threshold
--seed 0 define seed for random distribution of dataset
--augPolicy 2 augmentation policy: 0 for none, 1 for moderate, 2 for heavy (random-augment)
--swa Apply SWA
--swa_start 200 Start SWA
--swa_freq 5 Frequency
--mixup Apply Mixup to inputs
--alpha 1.0 mixup interpolation coefficient (default: 1)
--debug Track the testing accuracy, only for debugging purposes

Bibtex

If you use Curriculum Labeling for your research or projects, please cite Curriculum Labeling: Revisiting Pseudo-Labeling for Semi-Supervised Learning.

@misc{cascantebonilla2020curriculum,
    title={Curriculum Labeling: Revisiting Pseudo-Labeling for Semi-Supervised Learning},
    author={Paola Cascante-Bonilla and Fuwen Tan and Yanjun Qi and Vicente Ordonez},
    year={2020},
    eprint={2001.06001},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
CodeBERT: A Pre-Trained Model for Programming and Natural Languages.

CodeBERT This repo provides the code for reproducing the experiments in CodeBERT: A Pre-Trained Model for Programming and Natural Languages. CodeBERT

Microsoft 1k Jan 03, 2023
Implementation of the Hybrid Perception Block and Dual-Pruned Self-Attention block from the ITTR paper for Image to Image Translation using Transformers

ITTR - Pytorch Implementation of the Hybrid Perception Block (HPB) and Dual-Pruned Self-Attention (DPSA) block from the ITTR paper for Image to Image

Phil Wang 17 Dec 23, 2022
CoSENT、STS、SentenceBERT

CoSENT_Pytorch 比Sentence-BERT更有效的句向量方案

102 Dec 07, 2022
Implementation of TF-IDF algorithm to find documents similarity with cosine similarity

NLP learning Trying to learn NLP to use in my projects! Table of Contents About The Project Built With Getting Started Requirements Run Usage License

Faraz Farangizadeh 3 Aug 25, 2022
GCRC: A Gaokao Chinese Reading Comprehension dataset for interpretable Evaluation

GCRC GCRC: A New Challenging MRC Dataset from Gaokao Chinese for Explainable Eva

Yunxiao Zhao 5 Nov 04, 2022
a CTF web challenge about making screenshots

screenshotter (web) A CTF web challenge about making screenshots. It is inspired by a bug found in real life. The challenge was created by @LiveOverfl

219 Jan 02, 2023
End-to-End Speech Processing Toolkit

ESPnet: end-to-end speech processing toolkit system/pytorch ver. 1.0.1 1.1.0 1.2.0 1.3.1 1.4.0 1.5.1 1.6.0 1.7.1 1.8.1 ubuntu18/python3.8/pip ubuntu18

ESPnet 5.9k Jan 03, 2023
PyTorch implementation of the NIPS-17 paper "Poincaré Embeddings for Learning Hierarchical Representations"

Poincaré Embeddings for Learning Hierarchical Representations PyTorch implementation of Poincaré Embeddings for Learning Hierarchical Representations

Facebook Research 1.6k Dec 29, 2022
AllenNLP integration for Shiba: Japanese CANINE model

Allennlp Integration for Shiba allennlp-shiab-model is a Python library that provides AllenNLP integration for shiba-model. SHIBA is an approximate re

Shunsuke KITADA 12 Feb 16, 2022
Implementation of Memorizing Transformers (ICLR 2022), attention net augmented with indexing and retrieval of memories using approximate nearest neighbors, in Pytorch

Memorizing Transformers - Pytorch Implementation of Memorizing Transformers (ICLR 2022), attention net augmented with indexing and retrieval of memori

Phil Wang 364 Jan 06, 2023
SNCSE: Contrastive Learning for Unsupervised Sentence Embedding with Soft Negative Samples

SNCSE SNCSE: Contrastive Learning for Unsupervised Sentence Embedding with Soft Negative Samples This is the repository for SNCSE. SNCSE aims to allev

Sense-GVT 59 Jan 02, 2023
HiFi DeepVariant + WhatsHap workflowHiFi DeepVariant + WhatsHap workflow

HiFi DeepVariant + WhatsHap workflow Workflow steps align HiFi reads to reference with pbmm2 call small variants with DeepVariant, using two-pass meth

William Rowell 2 May 14, 2022
Implementation of paper Does syntax matter? A strong baseline for Aspect-based Sentiment Analysis with RoBERTa.

RoBERTaABSA This repo contains the code for NAACL 2021 paper titled Does syntax matter? A strong baseline for Aspect-based Sentiment Analysis with RoB

106 Nov 28, 2022
An A-SOUL Text Generator Based on CPM-Distill.

ASOUL-Generator-Backend 本项目为 https://asoul.infedg.xyz/ 的后端。 模型为基于 CPM-Distill 的 transformers 转化版本 CPM-Generate-distill 训练而成。

infinityedge 46 Dec 11, 2022
Python module (C extension and plain python) implementing Aho-Corasick algorithm

pyahocorasick pyahocorasick is a fast and memory efficient library for exact or approximate multi-pattern string search meaning that you can find mult

Wojciech Muła 763 Dec 27, 2022
Use Google's BERT for named entity recognition (CoNLL-2003 as the dataset).

For better performance, you can try NLPGNN, see NLPGNN for more details. BERT-NER Version 2 Use Google's BERT for named entity recognition (CoNLL-2003

Kaiyinzhou 1.2k Dec 26, 2022
[ICLR'19] Trellis Networks for Sequence Modeling

TrellisNet for Sequence Modeling This repository contains the experiments done in paper Trellis Networks for Sequence Modeling by Shaojie Bai, J. Zico

CMU Locus Lab 460 Oct 13, 2022
SGMC: Spectral Graph Matrix Completion

SGMC: Spectral Graph Matrix Completion Code for AAAI21 paper "Scalable and Explainable 1-Bit Matrix Completion via Graph Signal Learning". Data Format

Chao Chen 8 Dec 12, 2022
Th2En & Th2Zh: The large-scale datasets for Thai text cross-lingual summarization

Th2En & Th2Zh: The large-scale datasets for Thai text cross-lingual summarization 📥 Download Datasets 📥 Download Trained Models INTRODUCTION TH2ZH (

Nakhun Chumpolsathien 5 Jan 03, 2022
BERT-based Financial Question Answering System

BERT-based Financial Question Answering System In this example, we use Jina, PyTorch, and Hugging Face transformers to build a production-ready BERT-b

Bithiah Yuan 61 Sep 18, 2022