Graph Coloring - Weighted Vertex Coloring Problem

Overview

Graph Coloring - Weighted Vertex Coloring Problem

MIT License

This project proposes several local searches and an MCTS algorithm for the weighted vertex coloring problem (WVCP).

This problem is an variant of the Graph Coloring Problem. Given a weighted graph G=(V,E), the set of vertices V, the set of edges E and let W be the set of weights w(v) associated to each vertex v in V, the WVCP consists in finding a partition of the vertices V in into k color groups S=(V_1,...,Vk) (1 \leq k \leq |V|) such that no adjacent vertices belong to the same color group and such that the objective function f(S) = \sum_{i=1}^{k}\max_{v\in V_i}{w(v)} is minimized.

This project is coded in C++ for the calculation part and in Python for the data analysis. This work is related to the article :

Grelier, C., Goudet, O., Hao, J.-K., 2022. On Monte Carlo Tree Search for Weighted Vertex Coloring. arXiv:2202.01665 [cs]. https://arxiv.org/abs/2202.01665

Requirements

To compile this project you need :

  • cmake 3.14+
  • Doxygen (optional, to build the documentation)
  • Python (used with 3.8+ for the slurm job generators, data analysis and documentation)

Run the project

Clone the project

git clone https://github.com/Cyril-Grelier/gc_wvcp_mcts

Go to the project directory

cd gc_wvcp_mcts

Load the instances

git submodule init
git submodule update

Build and compile the project :

./scripts/build.sh

Run the project :

cd build
./gc_wvcp --help

Run with slurm

You can find a generator of “to_eval” file to run jobs with slurm or GNU parallel. Set the desired instances, random seed and different parameters in scripts/generator_to_eval_ls.py (for local search) or scripts/generator_to_eval_mcts.py (for mcts) and run the script with python (no particular packages are required) python scripts/generator_to_eval_mcts.py and it will generate output directory and a to_eval file which will contain each command line argument to run with slurm or GNU Parallel.

Create Python environment for data analysis or documentation

Make sure to create the environment for python and activate it before running scripts for data analysis or documentation :

./scripts/build_python.sh
source venv/bin/activate

Data analysis

scripts/generate_table.py takes raw data and convert it to xlsx files (in xlsx_files repertory) with colored best scores, p-value calculation.

Make sure to set all required methods, instances and output names directly in the script before running it.

Results

You can find the raw results in outputs from runs of the code on different instances on the cluster of Nantes : https://ccipl.univ-nantes.fr/ (nazare nodes). These files are in csv format with the header on the first line, followed by each improving solution found during the search (with the complete solution), the last line corresponds to the best solution found during the whole search with the number of iterations, the time,… at the end of the run. The processed data can be found in xlsx_files (files generated by scripts/generate_table.py script). In those files, the results are slightly different comparing to the results in the article as they have been computed on a different CPU but the tendency stay the same.

Documentation

You can generate the documentation by running :

cd docs
make html

The doc main page will be located in : docs/_build/html/index.html. It’s a basic documentation generated from comments in the code.

Acknowledgements

We would like to thank Dr. Wen Sun for sharing the binary code of their AFISA algorithm [1] (the AFISA algorithm have been reimplemented from the article, afisa_original), Dr. Yiyuan Wang for sharing the code of their RedLS algorithm [2] (the RedLS algorithm have been reimplemented from the article, redls) and Pr. Bruno Nogueira for sharing the code of their ILS-TS algorithm [3] (some part of the code have been used and adapted to the implementation of the project, ilsts).

Owner
Cyril
PHD student currently working on metaheuristic (soon) guided by deep learning to solve graph coloring problems.
Cyril
Implementation of Natural Language Code Search in the project CodeBERT: A Pre-Trained Model for Programming and Natural Languages.

CodeBERT-Implementation In this repo we have replicated the paper CodeBERT: A Pre-Trained Model for Programming and Natural Languages. We are interest

Tanuj Sur 4 Jul 01, 2022
Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)

TOPSIS implementation in Python Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) CHING-LAI Hwang and Yoon introduced TOPSIS

Hamed Baziyad 8 Dec 10, 2022
COVID-19 Related NLP Papers

COVID-19 outbreak has become a global pandemic. NLP researchers are fighting the epidemic in their own way.

xcfeng 28 Oct 30, 2022
Prithivida 690 Jan 04, 2023
Backend for the Autocomplete platform. An AI assisted coding platform.

Introduction A custom predictor allows you to deploy your own prediction implementation, useful when the existing serving implementations don't fit yo

Tatenda Christopher Chinyamakobvu 1 Jan 31, 2022
⚡ boost inference speed of T5 models by 5x & reduce the model size by 3x using fastT5.

Reduce T5 model size by 3X and increase the inference speed up to 5X. Install Usage Details Functionalities Benchmarks Onnx model Quantized onnx model

Kiran R 399 Jan 05, 2023
Chinese real time voice cloning (VC) and Chinese text to speech (TTS).

Chinese real time voice cloning (VC) and Chinese text to speech (TTS). 好用的中文语音克隆兼中文语音合成系统,包含语音编码器、语音合成器、声码器和可视化模块。

Kuang Dada 6 Nov 08, 2022
text to speech toolkit. 好用的中文语音合成工具箱,包含语音编码器、语音合成器、声码器和可视化模块。

ttskit Text To Speech Toolkit: 语音合成工具箱。 安装 pip install -U ttskit 注意 可能需另外安装的依赖包:torch,版本要求torch=1.6.0,=1.7.1,根据自己的实际环境安装合适cuda或cpu版本的torch。 ttskit的

KDD 483 Jan 04, 2023
Japanese synonym library

chikkarpy chikkarpyはchikkarのPython版です。 chikkarpy is a Python version of chikkar. chikkarpy は Sudachi 同義語辞書を利用し、SudachiPyの出力に同義語展開を追加するために開発されたライブラリです。

Works Applications 48 Dec 14, 2022
Russian GPT3 models.

Russian GPT-3 models (ruGPT3XL, ruGPT3Large, ruGPT3Medium, ruGPT3Small) trained with 2048 sequence length with sparse and dense attention blocks. We also provide Russian GPT-2 large model (ruGPT2Larg

Sberbank AI 1.6k Jan 05, 2023
An algorithm that can solve the word puzzle Wordle with an optimal number of guesses on HARD mode.

WordleSolver An algorithm that can solve the word puzzle Wordle with an optimal number of guesses on HARD mode. How to use the program Copy this proje

Akil Selvan Rajendra Janarthanan 3 Mar 02, 2022
LCG T-TEST USING EUCLIDEAN METHOD

This project has been created for statistical usage, purposing for determining ATL takers and nontakers using LCG ttest and Euclidean Method, especially for internal business case in Telkomsel.

2 Jan 21, 2022
GrammarTagger — A Neural Multilingual Grammar Profiler for Language Learning

GrammarTagger — A Neural Multilingual Grammar Profiler for Language Learning GrammarTagger is an open-source toolkit for grammatical profiling for lan

Octanove Labs 27 Jan 05, 2023
Few-shot Natural Language Generation for Task-Oriented Dialog

Few-shot Natural Language Generation for Task-Oriented Dialog This repository contains the dataset, source code and trained model for the following pa

172 Dec 13, 2022
Mycroft Core, the Mycroft Artificial Intelligence platform.

Mycroft Mycroft is a hackable open source voice assistant. Table of Contents Getting Started Running Mycroft Using Mycroft Home Device and Account Man

Mycroft 6.1k Jan 09, 2023
Code for EMNLP 2021 main conference paper "Text AutoAugment: Learning Compositional Augmentation Policy for Text Classification"

Code for EMNLP 2021 main conference paper "Text AutoAugment: Learning Compositional Augmentation Policy for Text Classification"

LancoPKU 105 Jan 03, 2023
DataCLUE: 国内首个以数据为中心的AI测评(含模型分析报告)

DataCLUE 以数据为中心的AI测评(DataCLUE) DataCLUE: A Chinese Data-centric Language Evaluation Benchmark 内容导引 章节 描述 简介 介绍以数据为中心的AI测评(DataCLUE)的背景 任务描述 任务描述 实验结果

CLUE benchmark 135 Dec 22, 2022
:house_with_garden: Fast & easy transfer learning for NLP. Harvesting language models for the industry. Focus on Question Answering.

(Framework for Adapting Representation Models) What is it? FARM makes Transfer Learning with BERT & Co simple, fast and enterprise-ready. It's built u

deepset 1.6k Dec 27, 2022
auto_code_complete is a auto word-completetion program which allows you to customize it on your need

auto_code_complete v1.3 purpose and usage auto_code_complete is a auto word-completetion program which allows you to customize it on your needs. the m

RUO 2 Feb 22, 2022
Signature remover is a NLP based solution which removes email signatures from the rest of the text.

Signature Remover Signature remover is a NLP based solution which removes email signatures from the rest of the text. It helps to enchance data conten

Forges Alterway 8 Jan 06, 2023