PyTorch impelementations of BERT-based Spelling Error Correction Models.

Overview

BertBasedCorrectionModels

基于BERT的文本纠错模型,使用PyTorch实现

数据准备

  1. http://nlp.ee.ncu.edu.tw/resource/csc.html下载SIGHAN数据集
  2. 解压上述数据集并将文件夹中所有 ''.sgml'' 文件复制至 datasets/csc/ 目录
  3. 复制 ''SIGHAN15_CSC_TestInput.txt'' 和 ''SIGHAN15_CSC_TestTruth.txt'' 至 datasets/csc/ 目录
  4. 下载 https://github.com/wdimmy/Automatic-Corpus-Generation/blob/master/corpus/train.sgml 至 datasets/csc 目录
  5. 请确保以下文件在 datasets/csc 中
    train.sgml
    B1_training.sgml
    C1_training.sgml  
    SIGHAN15_CSC_A2_Training.sgml  
    SIGHAN15_CSC_B2_Training.sgml  
    SIGHAN15_CSC_TestInput.txt
    SIGHAN15_CSC_TestTruth.txt
    

环境准备

  1. 使用已有编码环境或通过 conda create -n python=3.7 创建一个新环境(推荐)
  2. 克隆本项目并进入项目根目录
  3. 安装所需依赖 pip install -r requirements.txt
  4. 如果出现报错 GLIBC 版本过低的问题(GLIBC 的版本更迭容易出事故,不推荐更新),openCC 改为安装较低版本(例如 1.1.0)
  5. 在当前终端将此目录加入环境变量 export PYTHONPATH=.

训练

运行以下命令以训练模型,首次运行会自动处理数据。

python tools/train_csc.py --config_file csc/train_SoftMaskedBert.yml

可选择不同配置文件以训练不同模型,目前支持以下配置文件:

  • train_bert4csc.yml
  • train_macbert4csc.yml
  • train_SoftMaskedBert.yml

如有其他需求,可根据需要自行调整配置文件中的参数。

实验结果

SoftMaskedBert

component sentence level acc p r f
Detection 0.5045 0.8252 0.8416 0.8333
Correction 0.8055 0.9395 0.8748 0.9060

Bert类

char level

MODEL p r f
BERT4CSC 0.9269 0.8651 0.8949
MACBERT4CSC 0.9380 0.8736 0.9047

sentence level

model acc p r f
BERT4CSC 0.7990 0.8482 0.7214 0.7797
MACBERT4CSC 0.8027 0.8525 0.7251 0.7836

推理

方法一,使用inference脚本:

python inference.py --ckpt_fn epoch=0-val_loss=0.03.ckpt --texts "我今天很高心"
# 或给出line by line格式的文本地址
python inference.py --ckpt_fn epoch=0-val_loss=0.03.ckpt --text_file /ml/data/text.txt

其中/ml/data/text.txt文本如下:

我今天很高心
你这个辣鸡模型只能做错别字纠正

方法二,直接调用

texts = ['今天我很高心', '测试', '继续测试']
model.predict(texts)

方法三、导出bert权重,使用transformers或pycorrector调用

  1. 使用convert_to_pure_state_dict.py导出bert权重
  2. 后续步骤参考https://github.com/shibing624/pycorrector/blob/master/pycorrector/macbert/README.md

引用

如果你在研究中使用了本项目,请按如下格式引用:

@article{cai2020pre,
  title={BERT Based Correction Models},
  author={Cai, Heng and Chen, Dian},
  journal={GitHub. Note: https://github.com/gitabtion/BertBasedCorrectionModels},
  year={2020}
}

License

本源代码的授权协议为 Apache License 2.0,可免费用做商业用途。请在产品说明中附加本项目的链接和授权协议。本项目受版权法保护,侵权必究。

更新记录

20210618

  1. 修复数据处理的编码报错问题

20210518

  1. 将BERT4CSC检错任务改为使用FocalLoss
  2. 更新修改后的模型实验结果
  3. 降低数据处理时保留原文的概率

20210517

  1. 对BERT4CSC模型新增检错任务
  2. 新增基于LineByLine文件的inference

References

  1. Spelling Error Correction with Soft-Masked BERT
  2. http://ir.itc.ntnu.edu.tw/lre/sighan8csc.html
  3. https://github.com/wdimmy/Automatic-Corpus-Generation
  4. transformers
  5. https://github.com/sunnyqiny/Confusionset-guided-Pointer-Networks-for-Chinese-Spelling-Check
  6. SoftMaskedBert-PyTorch
  7. Deep-Learning-Project-Template
  8. https://github.com/lonePatient/TorchBlocks
  9. https://github.com/shibing624/pycorrector
Owner
Heng Cai
NLPer
Heng Cai
2021语言与智能技术竞赛:机器阅读理解任务

LICS2021 MRC 1. 项目&任务介绍 本项目基于官方给定的baseline(DuReader-Checklist-BASELINE)进行二次改造,对整个代码框架做了简单的重构,对核心网络结构添加了注释,解耦了数据读取的模块,并添加了阈值确认的功能,一些小的细节也做了改进。 本次任务为202

roar 29 Dec 05, 2022
Summarization, translation, sentiment-analysis, text-generation and more at blazing speed using a T5 version implemented in ONNX.

Summarization, translation, Q&A, text generation and more at blazing speed using a T5 version implemented in ONNX. This package is still in alpha stag

Abel 211 Dec 28, 2022
The Classical Language Toolkit

Notice: This Git branch (dev) contains the CLTK's upcoming major release (v. 1.0.0). See https://github.com/cltk/cltk/tree/master and https://docs.clt

Classical Language Toolkit 754 Jan 09, 2023
Natural Language Processing Tasks and Examples.

Natural Language Processing Tasks and Examples With the advancement of A.I. technology in recent years, natural language processing technology has bee

Soohwan Kim 53 Dec 20, 2022
Transformer related optimization, including BERT, GPT

This repository provides a script and recipe to run the highly optimized transformer-based encoder and decoder component, and it is tested and maintained by NVIDIA.

NVIDIA Corporation 1.7k Jan 04, 2023
CCF BDCI 2020 房产行业聊天问答匹配赛道 A榜47/2985

CCF BDCI 2020 房产行业聊天问答匹配 A榜47/2985 赛题描述详见:https://www.datafountain.cn/competitions/474 文件说明 data: 存放训练数据和测试数据以及预处理代码 model_bert.py: 网络模型结构定义 adv_train

shuo 40 Sep 28, 2022
Simple text to phones converter for multiple languages

Phonemizer -- foʊnmaɪzɚ The phonemizer allows simple phonemization of words and texts in many languages. Provides both the phonemize command-line tool

CoML 762 Dec 29, 2022
Tokenizer - Module python d'analyse syntaxique et de grammaire, tokenization

Tokenizer Le Tokenizer est un analyseur lexicale, il permet, comme Flex and Yacc par exemple, de tokenizer du code, c'est à dire transformer du code e

Manolo 1 Aug 15, 2022
Malaya-Speech is a Speech-Toolkit library for bahasa Malaysia, powered by Deep Learning Tensorflow.

Malaya-Speech is a Speech-Toolkit library for bahasa Malaysia, powered by Deep Learning Tensorflow. Documentation Proper documentation is available at

HUSEIN ZOLKEPLI 151 Jan 05, 2023
Create a semantic search engine with a neural network (i.e. BERT) whose knowledge base can be updated

Create a semantic search engine with a neural network (i.e. BERT) whose knowledge base can be updated. This engine can later be used for downstream tasks in NLP such as Q&A, summarization, generation

Diego 1 Mar 20, 2022
Bpe algorithm can finetune tokenizer - Bpe algorithm can finetune tokenizer

"# bpe_algorithm_can_finetune_tokenizer" this is an implyment for https://github

张博 1 Feb 02, 2022
PyTorch source code of NAACL 2019 paper "An Embarrassingly Simple Approach for Transfer Learning from Pretrained Language Models"

This repository contains source code for NAACL 2019 paper "An Embarrassingly Simple Approach for Transfer Learning from Pretrained Language Models" (P

Alexandra Chronopoulou 89 Aug 12, 2022
NeMo: a toolkit for conversational AI

NVIDIA NeMo Introduction NeMo is a toolkit for creating Conversational AI applications. NeMo product page. Introductory video. The toolkit comes with

NVIDIA Corporation 5.3k Jan 04, 2023
Deeply Supervised, Layer-wise Prediction-aware (DSLP) Transformer for Non-autoregressive Neural Machine Translation

Non-Autoregressive Translation with Layer-Wise Prediction and Deep Supervision Training Efficiency We show the training efficiency of our DSLP model b

Chenyang Huang 37 Jan 04, 2023
edge-SR: Super-Resolution For The Masses

edge-SR: Super Resolution For The Masses Citation Pablo Navarrete Michelini, Yunhua Lu and Xingqun Jiang. "edge-SR: Super-Resolution For The Masses",

Pablo 40 Nov 10, 2022
Pretrain CPM - 大规模预训练语言模型的预训练代码

CPM-Pretrain 版本更新记录 为了促进中文自然语言处理研究的发展,本项目提供了大规模预训练语言模型的预训练代码。项目主要基于DeepSpeed、Megatron实现,可以支持数据并行、模型加速、流水并行的代码。 安装 1、首先安装pytorch等基础依赖,再安装APEX以支持fp16。 p

Tsinghua AI 37 Dec 06, 2022
Code for text augmentation method leveraging large-scale language models

HyperMix Code for our paper GPT3Mix and conducting classification experiments using GPT-3 prompt-based data augmentation. Getting Started Installing P

NAVER AI 47 Dec 20, 2022
A collection of Korean Text Datasets ready to use using Tensorflow-Datasets.

tfds-korean A collection of Korean Text Datasets ready to use using Tensorflow-Datasets. TensorFlow-Datasets를 이용한 한국어/한글 데이터셋 모음입니다. Dataset Catalog |

Jeong Ukjae 20 Jul 11, 2022
DensePhrases provides answers to your natural language questions from the entire Wikipedia in real-time

DensePhrases provides answers to your natural language questions from the entire Wikipedia in real-time. While it efficiently searches the answers out of 60 billion phrases in Wikipedia, it is also v

Jinhyuk Lee 543 Jan 08, 2023