Code associated with the Don't Stop Pretraining ACL 2020 paper

Overview

dont-stop-pretraining

Code associated with the Don't Stop Pretraining ACL 2020 paper

Citation

@inproceedings{dontstoppretraining2020,
 author = {Suchin Gururangan and Ana Marasović and Swabha Swayamdipta and Kyle Lo and Iz Beltagy and Doug Downey and Noah A. Smith},
 title = {Don't Stop Pretraining: Adapt Language Models to Domains and Tasks},
 year = {2020},
 booktitle = {Proceedings of ACL},
}

Installation

conda env create -f environment.yml
conda activate domains

Working with the latest allennlp version

This repository works with a pinned allennlp version for reproducibility purposes. This pinned version of allennlp relies on pytorch-transformers==1.2.0, which requires you to manually download custom transformer models on disk.

To run this code with the latest allennlp/ transformers version (and use the huggingface model repository to its full capacity) checkout the branch latest-allennlp. Caution that we haven't tested out all models on this branch, so your results may vary from what we report in paper.

If you'd like to use this pinned allennlp version, read on. Otherwise, checkout latest-allennlp.

Available Pretrained Models

We've uploaded DAPT and TAPT models to huggingface.

DAPT models

Available DAPT models:

allenai/cs_roberta_base
allenai/biomed_roberta_base
allenai/reviews_roberta_base
allenai/news_roberta_base

TAPT models

Available TAPT models:

allenai/dsp_roberta_base_dapt_news_tapt_ag_115K
allenai/dsp_roberta_base_tapt_ag_115K
allenai/dsp_roberta_base_dapt_reviews_tapt_amazon_helpfulness_115K
allenai/dsp_roberta_base_tapt_amazon_helpfulness_115K
allenai/dsp_roberta_base_dapt_biomed_tapt_chemprot_4169
allenai/dsp_roberta_base_tapt_chemprot_4169
allenai/dsp_roberta_base_dapt_cs_tapt_citation_intent_1688
allenai/dsp_roberta_base_tapt_citation_intent_1688
allenai/dsp_roberta_base_dapt_news_tapt_hyperpartisan_news_5015
allenai/dsp_roberta_base_dapt_news_tapt_hyperpartisan_news_515
allenai/dsp_roberta_base_tapt_hyperpartisan_news_5015
allenai/dsp_roberta_base_tapt_hyperpartisan_news_515
allenai/dsp_roberta_base_dapt_reviews_tapt_imdb_20000
allenai/dsp_roberta_base_dapt_reviews_tapt_imdb_70000
allenai/dsp_roberta_base_tapt_imdb_20000
allenai/dsp_roberta_base_tapt_imdb_70000
allenai/dsp_roberta_base_dapt_biomed_tapt_rct_180K
allenai/dsp_roberta_base_tapt_rct_180K
allenai/dsp_roberta_base_dapt_biomed_tapt_rct_500
allenai/dsp_roberta_base_tapt_rct_500
allenai/dsp_roberta_base_dapt_cs_tapt_sciie_3219
allenai/dsp_roberta_base_tapt_sciie_3219

The final numbers in each model above are the dataset sizes. Larger dataset sizes (e.g. imdb_70000 vs. imdb_20000) are curated TAPT models. These only exist for imdb, rct, and hyperpartisan_news.

Downloading Pretrained models

You can download a pretrained model using the scripts/download_model.py script.

Just supply a model type and serialization directory, like so:

python -m scripts.download_model \
        --model allenai/dsp_roberta_base_dapt_cs_tapt_citation_intent_1688 \
        --serialization_dir $(pwd)/pretrained_models/dsp_roberta_base_dapt_cs_tapt_citation_intent_1688

This will output the allenai/dsp_roberta_base_dapt_cs_tapt_citation_intent_1688 model for Citation Intent corpus in $(pwd)/pretrained_models/dsp_roberta_base_dapt_cs_tapt_citation_intent_1688

Downloading data

All task data is available on a public S3 url; check environments/datasets.py.

If you run the scripts/train.py command (see next step), we will automatically download the relevant dataset(s) using the URLs in environments/datasets.py. However, if you'd like to download the data for use outside of this repository, you will have to curl each dataset individually:

curl -Lo train.jsonl https://allennlp.s3-us-west-2.amazonaws.com/dont_stop_pretraining/data/chemprot/train.jsonl
curl -Lo dev.jsonl https://allennlp.s3-us-west-2.amazonaws.com/dont_stop_pretraining/data/chemprot/dev.jsonl
curl -Lo test.jsonl https://allennlp.s3-us-west-2.amazonaws.com/dont_stop_pretraining/data/chemprot/test.jsonl

Example commands

Run basic RoBERTa model

The following command will train a RoBERTa classifier on the Citation Intent corpus. Check environments/datasets.py for other datasets you can pass to the --dataset flag.

python -m scripts.train \
        --config training_config/classifier.jsonnet \
        --serialization_dir model_logs/citation_intent_base \
        --hyperparameters ROBERTA_CLASSIFIER_SMALL \
        --dataset citation_intent \
        --model roberta-base \
        --device 0 \
        --perf +f1 \
        --evaluate_on_test

You can supply other downloaded models to this script, by providing a path to the model:

python -m scripts.train \
        --config training_config/classifier.jsonnet \
        --serialization_dir model_logs/citation-intent-dapt-dapt \
        --hyperparameters ROBERTA_CLASSIFIER_SMALL \
        --dataset citation_intent \
        --model $(pwd)/pretrained_models/dsp_roberta_base_dapt_cs_tapt_citation_intent_1688 \
        --device 0 \
        --perf +f1 \
        --evaluate_on_test

Perform hyperparameter search

First, install allentune: https://github.com/allenai/allentune

Modify search_space/classifier.jsonnet accordingly.

Then run:

allentune search \
            --experiment-name ag_search \
            --num-cpus 56 \
            --num-gpus 4 \
            --search-space search_space/classifier.jsonnet \
            --num-samples 100 \
            --base-config training_config/classifier.jsonnet  \
            --include-package dont_stop_pretraining

Modify --num-gpus and --num-samples accordingly.

Auto translate textbox from Japanese to English or Indonesia

priconne-auto-translate Auto translate textbox from Japanese to English or Indonesia How to use Install python first, Anaconda is recommended Install

Aji Priyo Wibowo 5 Aug 25, 2022
Arabic speech recognition, classification and text-to-speech.

klaam Arabic speech recognition, classification and text-to-speech using many advanced models like wave2vec and fastspeech2. This repository allows tr

ARBML 177 Dec 27, 2022
precise iris segmentation

PI-DECODER Introduction PI-DECODER, a decoder structure designed for Precise Iris Segmentation and Location. The decoder structure is shown below: Ple

8 Aug 08, 2022
skweak: A software toolkit for weak supervision applied to NLP tasks

Labelled data remains a scarce resource in many practical NLP scenarios. This is especially the case when working with resource-poor languages (or text domains), or when using task-specific labels wi

Norsk Regnesentral (Norwegian Computing Center) 850 Dec 28, 2022
Header-only C++ HNSW implementation with python bindings

Hnswlib - fast approximate nearest neighbor search Header-only C++ HNSW implementation with python bindings. NEWS: version 0.6 Thanks to (@dyashuni) h

2.3k Jan 05, 2023
Large-scale Self-supervised Pre-training Across Tasks, Languages, and Modalities

Hiring We are hiring at all levels (including FTE researchers and interns)! If you are interested in working with us on NLP and large-scale pre-traine

Microsoft 7.8k Jan 09, 2023
Implementing SimCSE(paper, official repository) using TensorFlow 2 and KR-BERT.

KR-BERT-SimCSE Implementing SimCSE(paper, official repository) using TensorFlow 2 and KR-BERT. Training Unsupervised python train_unsupervised.py --mi

Jeong Ukjae 27 Dec 12, 2022
Official code of our work, Unified Pre-training for Program Understanding and Generation [NAACL 2021].

PLBART Code pre-release of our work, Unified Pre-training for Program Understanding and Generation accepted at NAACL 2021. Note. A detailed documentat

Wasi Ahmad 138 Dec 30, 2022
Russian GPT3 models.

Russian GPT-3 models (ruGPT3XL, ruGPT3Large, ruGPT3Medium, ruGPT3Small) trained with 2048 sequence length with sparse and dense attention blocks. We also provide Russian GPT-2 large model (ruGPT2Larg

Sberbank AI 1.6k Jan 05, 2023
Code for the paper "Language Models are Unsupervised Multitask Learners"

Status: Archive (code is provided as-is, no updates expected) gpt-2 Code and models from the paper "Language Models are Unsupervised Multitask Learner

OpenAI 16.1k Jan 08, 2023
spaCy plugin for Transformers , Udify, ELmo, etc.

Camphr - spaCy plugin for Transformers, Udify, Elmo, etc. Camphr is a Natural Language Processing library that helps in seamless integration for a wid

342 Nov 21, 2022
:hot_pepper: R²SQL: "Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing." (AAAI 2021)

R²SQL The PyTorch implementation of paper Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing. (AAAI 2021) Requirement

huybery 60 Dec 31, 2022
Beyond Masking: Demystifying Token-Based Pre-Training for Vision Transformers

beyond masking Beyond Masking: Demystifying Token-Based Pre-Training for Vision Transformers The code is coming Figure 1: Pipeline of token-based pre-

Yunjie Tian 23 Sep 27, 2022
Two-stage text summarization with BERT and BART

Two-Stage Text Summarization Description We experiment with a 2-stage summarization model on CNN/DailyMail dataset that combines the ability to filter

Yukai Yang (Alexis) 6 Oct 22, 2022
[EMNLP 2021] Mirror-BERT: Converting Pretrained Language Models to universal text encoders without labels.

[EMNLP 2021] Mirror-BERT: Converting Pretrained Language Models to universal text encoders without labels.

Cambridge Language Technology Lab 61 Dec 10, 2022
Library of deep learning models and datasets designed to make deep learning more accessible and accelerate ML research.

Tensor2Tensor Tensor2Tensor, or T2T for short, is a library of deep learning models and datasets designed to make deep learning more accessible and ac

12.9k Jan 07, 2023
InferSent sentence embeddings

InferSent InferSent is a sentence embeddings method that provides semantic representations for English sentences. It is trained on natural language in

Facebook Research 2.2k Dec 27, 2022
This is the writeup of all the challenges from Advent-of-cyber-2019 of TryHackMe

Advent-of-cyber-2019-writeup This is the writeup of all the challenges from Advent-of-cyber-2019 of TryHackMe https://tryhackme.com/shivam007/badges/c

shivam danawale 5 Jul 17, 2022
Train and use generative text models in a few lines of code.

blather Train and use generative text models in a few lines of code. To see blather in action check out the colab notebook! Installation Use the packa

Dan Carroll 16 Nov 07, 2022
Indonesia spellchecker with python

indonesia-spellchecker Ganti kata yang terdapat pada file teks.txt untuk diperiksa kebenaran kata. Run on local machine python3 main.py

Rahmat Agung Julians 1 Sep 14, 2022