A Python package implementing a new model for text classification with visualization tools for Explainable AI :octocat:

Overview

PySS3 Logo

Documentation Status Build Status codecov Requirements Status PyPI version Downloads Binder


A Python package implementing a new model for text classification with visualization tools for Explainable AI

๐Ÿฃ Online live demos: http://tworld.io/ss3/ ๐Ÿฆ ๐Ÿจ ๐Ÿฐ


The SS3 text classifier is a novel supervised machine learning model for text classification which has the ability to naturally explain its rationale. It was originally introduced in Section 3 of the paper "A text classification framework for simple and effective early depression detection over social media streams" (arXiv preprint). Given its white-box nature, it allows researchers and practitioners to deploy explainable, and therefore more reliable, models for text classification (which could be especially useful for those working with classification problems by which people's lives could be somehow affected).

Note: this package also incorporates different variations of the original model, such as the one introduced in "t-SS3: a text classifier with dynamic n-grams for early risk detection over text streams" (arXiv preprint) which allows SS3 to recognize important variable-length word n-grams "on the fly".

What is PySS3?

PySS3 is a Python package that allows you to work with SS3 in a very straightforward, interactive and visual way. In addition to the implementation of the SS3 classifier, PySS3 comes with a set of tools to help you developing your machine learning models in a clearer and faster way. These tools let you analyze, monitor and understand your models by allowing you to see what they have actually learned and why. To achieve this, PySS3 provides you with 3 main components: the SS3 class, the Live_Test class, and the Evaluation class, as pointed out below.

๐Ÿ‘‰ The SS3 class

which implements the classifier using a clear API (very similar to that of sklearn's models):

    from pyss3 import SS3
    clf = SS3()
    ...
    clf.fit(x_train, y_train)
    y_pred = clf.predict(x_test)

Also, this class provides a handful of other useful methods, such as, for instance, extract_insight() to extract the text fragments involved in the classification decision (allowing you to better understand the rationale behind the modelโ€™s predictions) or classify_multilabel() to provide multi-label classification support:

    doc = "Liverpool CEO Peter Moore on Building a Global Fanbase"
    
    # standard "single-label" classification
    label = clf.classify_label(doc) # 'business'

    # multi-label classification
    labels = clf.classify_multilabel(doc)  # ['business', 'sports']

๐Ÿ‘‰ The Live_Test class

which allows you to interactively test your model and visually see the reasons behind classification decisions, with just one line of code:

    from pyss3.server import Live_Test
    from pyss3 import SS3

    clf = SS3()
    ...
    clf.fit(x_train, y_train)
    Live_Test.run(clf, x_test, y_test) # <- this one! cool uh? :)

As shown in the image below, this will open up, locally, an interactive tool in your browser which you can use to (live) test your models with the documents given in x_test (or typing in your own!). This will allow you to visualize and understand what your model is actually learning.

img

For example, we have uploaded two of these live tests online for you to try out: "Movie Review (Sentiment Analysis)" and "Topic Categorization", both were obtained following the tutorials.

๐Ÿ‘‰ And last but not least, the Evaluation class

This is probably one of the most useful components of PySS3. As the name may suggest, this class provides the user easy-to-use methods for model evaluation and hyperparameter optimization, like, for example, the test, kfold_cross_validation, grid_search, and plot methods for performing tests, stratified k-fold cross validations, grid searches for hyperparameter optimization, and visualizing evaluation results using an interactive 3D plot, respectively. Probably one of its most important features is the ability to automatically (and permanently) record the history of evaluations that you've performed. This will save you a lot of time and will allow you to interactively visualize and analyze your classifier performance in terms of its different hyper-parameters values (and select the best model according to your needs). For instance, let's perform a grid search with a 4-fold cross-validation on the three hyperparameters, smoothness(s), significance(l), and sanction(p):

from pyss3.util import Evaluation
...
best_s, best_l, best_p, _ = Evaluation.grid_search(
    clf, x_train, y_train,
    s=[0.2, 0.32, 0.44, 0.56, 0.68, 0.8],
    l=[0.1, 0.48, 0.86, 1.24, 1.62, 2],
    p=[0.5, 0.8, 1.1, 1.4, 1.7, 2],
    k_fold=4
)

In this illustrative example, s, l, and p will take those 6 different values each, and once the search is over, this function will return (by default) the hyperparameter values that obtained the best accuracy. Now, we could also use the plot function to analyze the results obtained in our grid search using the interactive 3D evaluation plot:

Evaluation.plot()

img

In this 3D plot, each point represents an experiment/evaluation performed using that particular combination of values (s, l, and p). Also, these points are painted proportional to how good the performance was according to the selected metric; the plot will update "on the fly" when the user select a different evaluation metric (accuracy, precision, recall, f1, etc.). Additionally, when the cursor is moved over a data point, useful information is shown (including a "compact" representation of the confusion matrix obtained in that experiment). Finally, it is worth mentioning that, before showing the 3D plots, PySS3 creates a single and portable HTML file in your project folder containing the interactive plots. This allows users to store, send or upload the plots to another place using this single HTML file. For example, we have uploaded two of these files for you to see: "Sentiment Analysis (Movie Reviews)" and "Topic Categorization", both evaluation plots were also obtained following the tutorials.

Want to give PySS3 a shot? ๐Ÿ‘“ โ˜•

Just go to the Getting Started page :D

Installation

Simply use:

pip install pyss3

Want to contribute to this Open Source project? โœจ :octocat: โœจ

Thanks for your interest in the project, you're Awesome!! Any kind of help is very welcome (Code, Bug reports, Content, Data, Documentation, Design, Examples, Ideas, Feedback, etc.), Issues and/or Pull Requests are welcome for any level of improvement, from a small typo to new features, help us make PySS3 better ๐Ÿ‘

Remember that you can use the "Edit" button ('pencil' icon) up the top to edit any file of this repo directly on GitHub.

Also, if you star this repo ( ๐ŸŒŸ ), you would be helping PySS3 to gain more visibility and reach the hands of people who may find it useful since repository lists and search results are usually ordered by the total number of stars.

Finally, in case you're planning to create a new Pull Request, for committing to this repo, we follow the "seven rules of a great Git commit message" from "How to Write a Git Commit Message", so make sure your commits follow them as well.

(please do not hesitate to send me an email to [email protected] for anything)

Contributors ๐Ÿ’ช ๐Ÿ˜Ž ๐Ÿ‘

Thanks goes to these awesome people (emoji key):


Florian Angermeir

๐Ÿ’ป ๐Ÿค” ๐Ÿ”ฃ

Muneeb Vaiyani

๐Ÿค” ๐Ÿ”ฃ

Saurabh Bora

๐Ÿค”

This project follows the all-contributors specification. Contributions of any kind welcome!

Further Readings ๐Ÿ“œ

Full documentation

API documentation

Paper preprint

Owner
Sergio Burdisso
Computer Science Ph.D. student. (NLP/ML/Data Mining)
Sergio Burdisso
Package for controllable summarization

summarizers summarizers is package for controllable summarization based CTRLsum. currently, we only supports English. It doesn't work in other languag

Hyunwoong Ko 72 Dec 07, 2022
Textlesslib - Library for Textless Spoken Language Processing

textlesslib Textless NLP is an active area of research that aims to extend NLP t

Meta Research 379 Dec 27, 2022
Implementation of some unbalanced loss like focal_loss, dice_loss, DSC Loss, GHM Loss et.al

Implementation of some unbalanced loss for NLP task like focal_loss, dice_loss, DSC Loss, GHM Loss et.al Summary Here is a loss implementation reposit

121 Jan 01, 2023
Mapping a variable-length sentence to a fixed-length vector using BERT model

Are you looking for X-as-service? Try the Cloud-Native Neural Search Framework for Any Kind of Data bert-as-service Using BERT model as a sentence enc

Han Xiao 11.1k Jan 01, 2023
KR-FinBert And KR-FinBert-SC

KR-FinBert & KR-FinBert-SC Much progress has been made in the NLP (Natural Language Processing) field, with numerous studies showing that domain adapt

5 Jul 29, 2022
Diaformer: Automatic Diagnosis via Symptoms Sequence Generation

Diaformer Diaformer: Automatic Diagnosis via Symptoms Sequence Generation (AAAI 2022) Diaformer is an efficient model for automatic diagnosis via symp

Junying Chen 20 Dec 13, 2022
Russian GPT3 models.

Russian GPT-3 models (ruGPT3XL, ruGPT3Large, ruGPT3Medium, ruGPT3Small) trained with 2048 sequence length with sparse and dense attention blocks. We also provide Russian GPT-2 large model (ruGPT2Larg

Sberbank AI 1.6k Jan 05, 2023
A fast and easy implementation of Transformer with PyTorch.

FasySeq FasySeq is a shorthand as a Fast and easy sequential modeling toolkit. It aims to provide a seq2seq model to researchers and developers, which

ๅฎ็พฝ 7 Jul 18, 2022
Yet Another Compiler Visualizer

yacv: Yet Another Compiler Visualizer yacv is a tool for visualizing various aspects of typical LL(1) and LR parsers. Check out demo on YouTube to see

Ashutosh Sathe 129 Dec 17, 2022
A website which allows you to play with the GPT-2 transformer

transformers A website which allows you to play with the GPT-2 model Built with โค๏ธ by raphtlw Table of contents Model Setup About Contributors Model T

raphtlw 2 Jan 27, 2022
texlive expressions for documents

tex2nix Generate Texlive environment containing all dependencies for your document rather than downloading gigabytes of texlive packages. Installation

Jรถrg Thalheim 70 Dec 26, 2022
Named-entity recognition using neural networks. Easy-to-use and state-of-the-art results.

NeuroNER NeuroNER is a program that performs named-entity recognition (NER). Website: neuroner.com. This page gives step-by-step instructions to insta

Franck Dernoncourt 1.6k Dec 27, 2022
English loanwords in the world's languages

Wiktionary as CLDF Content cldf1 and cldf2 contain cldf-conform data sets with a total of 2 377 756 entries about the vocabulary of all 1403 languages

Viktor Martinoviฤ‡ 3 Jan 14, 2022
CodeBERT: A Pre-Trained Model for Programming and Natural Languages.

CodeBERT This repo provides the code for reproducing the experiments in CodeBERT: A Pre-Trained Model for Programming and Natural Languages. CodeBERT

Microsoft 1k Jan 03, 2023
Sentence boundary disambiguation tool for Japanese texts (ๆ—ฅๆœฌ่ชžๆ–‡ๅขƒ็•Œๅˆคๅฎšๅ™จ)

Bunkai Bunkai is a sentence boundary (SB) disambiguation tool for Japanese texts. Quick Start $ pip install bunkai $ echo -e 'ๅฎฟใ‚’ไบˆ็ด„ใ—ใพใ—ใŸโ™ช!ใพใ 2ใƒถๆœˆใ‚‚ๅ…ˆใ ใ‘ใฉใ€‚ๆ—ฉใ™ใŽ

Megagon Labs 160 Dec 23, 2022
precise iris segmentation

PI-DECODER Introduction PI-DECODER, a decoder structure designed for Precise Iris Segmentation and Location. The decoder structure is shown below: Ple

8 Aug 08, 2022
OCR์„ ์ด์šฉํ•˜์—ฌ ์ธ์›์ˆ˜๋ฅผ ์ธ์‹ ํ›„ ์คŒ์„ Kill ํ•ด์ค๋‹ˆ๋‹ค

How To Use killtheZoom-2.0 Windows 0. https://joyhong.tistory.com/79 ์ด ๊ธ€์„ ๋ณด๋ฉด์„œ tesseract๋ฅผ C:\Program Files\Tesseract-OCR ๊ฒฝ๋กœ๋กœ ์„ค์น˜ํ•ด์ฃผ์„ธ์š”(ํ•œ๊ตญ์–ด ์–ธ์–ด ์ถ”๊ฐ€ ํ•„์š”) ์ƒ๋‹จ์˜ ์ดˆ

๊น€์ •์ธ 9 Sep 13, 2021
๐Ÿ—ฃ๏ธ NALP is a library that covers Natural Adversarial Language Processing.

NALP: Natural Adversarial Language Processing Welcome to NALP. Have you ever wanted to create natural text from raw sources? If yes, NALP is for you!

Gustavo Rosa 21 Aug 12, 2022
Creating a python chatbot that Starbucks users can text to place an order + help cut wait time of a normal coffee.

Creating a python chatbot that Starbucks users can text to place an order + help cut wait time of a normal coffee.

2 Jan 20, 2022
AutoGluon: AutoML for Text, Image, and Tabular Data

AutoML for Text, Image, and Tabular Data AutoGluon automates machine learning tasks enabling you to easily achieve strong predictive performance in yo

Amazon Web Services - Labs 5.2k Dec 29, 2022