Pipeline for fast building text classification TF-IDF + LogReg baselines.

Overview

tests linter codecov

python 3.6 release (latest by date) license

pre-commit code style: black

pypi version pypi downloads

Text Classification Baseline

Pipeline for fast building text classification TF-IDF + LogReg baselines.

Usage

Instead of writing custom code for specific text classification task, you just need:

  1. install pipeline:
pip install text-classification-baseline
  1. run pipeline:
  • either in terminal:
text-clf-train
  • or in python:
import text_clf

text_clf.train()

No data preparation is needed, only a csv file with two raw columns (with arbitrary names):

  • text
  • target

NOTE: the target can be presented in any format, including text - not necessarily integers from 0 to n_classes-1.

Config

The user interface consists of only one file config.yaml.

Change config.yaml to create the desired configuration and train text classification model with the following command:

  • terminal:
text-clf-train --path_to_config config.yaml
  • python:
import text_clf

text_clf.train(path_to_config="config.yaml")

Default config.yaml:

seed: 42
verbose: true
path_to_save_folder: models

# data
data:
  train_data_path: data/train.csv
  valid_data_path: data/valid.csv
  sep: ','
  text_column: text
  target_column: target_name_short

# tf-idf
tf-idf:
  lowercase: true
  ngram_range: (1, 1)
  max_df: 1.0
  min_df: 0.0

# logreg
logreg:
  penalty: l2
  C: 1.0
  class_weight: balanced
  solver: saga
  multi_class: auto
  n_jobs: -1

NOTE: tf-idf and logreg are sklearn TfidfVectorizer and LogisticRegression parameters correspondingly, so you can parameterize instances of these classes however you want.

Output

After training the model, the pipeline will return the following files:

  • model.joblib - sklearn pipeline with TF-IDF and LogReg steps
  • target_names.json - mapping from encoded target labels from 0 to n_classes-1 to it names
  • config.yaml - config that was used to train the model
  • logging.txt - logging file

Requirements

Python >= 3.6

Citation

If you use text-classification-baseline in a scientific publication, we would appreciate references to the following BibTex entry:

@misc{dayyass2021textclf,
    author       = {El-Ayyass, Dani},
    title        = {Pipeline for training text classification baselines},
    howpublished = {\url{https://github.com/dayyass/text-classification-baseline}},
    year         = {2021}
}
You might also like...
Code for EMNLP 2021 main conference paper
Code for EMNLP 2021 main conference paper "Text AutoAugment: Learning Compositional Augmentation Policy for Text Classification"

Code for EMNLP 2021 main conference paper "Text AutoAugment: Learning Compositional Augmentation Policy for Text Classification"

This repository contains data used in the NAACL 2021 Paper - Proteno: Text Normalization with Limited Data for Fast Deployment in Text to Speech Systems

Proteno This is the data release associated with the corresponding NAACL 2021 Paper - Proteno: Text Normalization with Limited Data for Fast Deploymen

PyTorch implementation of Microsoft's text-to-speech system FastSpeech 2: Fast and High-Quality End-to-End Text to Speech.
PyTorch implementation of Microsoft's text-to-speech system FastSpeech 2: Fast and High-Quality End-to-End Text to Speech.

An implementation of Microsoft's "FastSpeech 2: Fast and High-Quality End-to-End Text to Speech"

glow-speak is a fast, local, neural text to speech system that uses eSpeak-ng as a text/phoneme front-end.

Glow-Speak glow-speak is a fast, local, neural text to speech system that uses eSpeak-ng as a text/phoneme front-end. Installation git clone https://g

Pipeline for chemical image-to-text competition
Pipeline for chemical image-to-text competition

BMS-Molecular-Translation Introduction This is a pipeline for Bristol-Myers Squibb – Molecular Translation by Vadim Timakin and Maksim Zhdanov. We got

Text-Summarization-using-NLP - Text Summarization using NLP  to fetch BBC News Article and summarize its text and also it includes custom article Summarization A Python package implementing a new model for text classification with visualization tools for Explainable AI :octocat:
A Python package implementing a new model for text classification with visualization tools for Explainable AI :octocat:

A Python package implementing a new model for text classification with visualization tools for Explainable AI 🍣 Online live demos: http://tworld.io/s

Text vectorization tool to outperform TFIDF for classification tasks
Text vectorization tool to outperform TFIDF for classification tasks

WHAT: Supervised text vectorization tool Textvec is a text vectorization tool, with the aim to implement all the "classic" text vectorization NLP meth

Text vectorization tool to outperform TFIDF for classification tasks
Text vectorization tool to outperform TFIDF for classification tasks

WHAT: Supervised text vectorization tool Textvec is a text vectorization tool, with the aim to implement all the "classic" text vectorization NLP meth

Comments
  • release v0.1.4

    release v0.1.4

    • fixed load_20newsgroups.py (#65 #71)
    • added Makefile (#71)
    • added logging confusion matrix (#72)
    • replaced all "valid" occurrences with "test" (#74)
    • updated docstrings (#77)
    • changed python interface - train function returns model and target_names_mapping (#78)
    enhancement 
    opened by dayyass 1
  • release v0.1.6

    release v0.1.6

    fixed token frequency support (add token frequency support #85) fixed threshold selection for binary classification (add threshold selection for binary classification #86)

    bug enhancement 
    opened by dayyass 0
  • release v0.1.5

    release v0.1.5

    • added lemmatization (#66)
    • added token frequency support (#84)
    • added threshold selection for binary classification (#79)
    • added arbitrary save folder name (#80)
    enhancement 
    opened by dayyass 0
  • release v0.1.5

    release v0.1.5

    • added lemmatization (#81)
    • added token frequency support (#85)
    • added threshold selection for binary classification (#86)
    • added arbitrary save folder name (#83)
    enhancement 
    opened by dayyass 0
Releases(v0.1.6)
  • v0.1.6(Nov 6, 2021)

    Release v0.1.6

    • fixed token frequency support (add token frequency support #85)
    • fixed threshold selection for binary classification (add threshold selection for binary classification #86)
    Source code(tar.gz)
    Source code(zip)
  • v0.1.5(Oct 21, 2021)

    Release v0.1.5 🥳🎉🍾

    • added pymorphy2 lemmatization (#81)
    • added token frequency support (#85)
    • added threshold selection for binary classification (#86)
    • added arbitrary save folder name (#83)

    pymorphy2 lemmatization (config.yaml)

    # preprocessing
    # (included in resulting model pipeline, so preserved for inference)
    preprocessing:
      lemmatization: pymorphy2
    

    token frequency support

    • text_clf.token_frequency.get_token_frequency(path_to_config) -
      get token frequency of train dataset according to the config file parameters

    threshold selection for binary classification

    • text_clf.pr_roc_curve.get_precision_recall_curve(path_to_model_folder) -
      get precision and recall metrics for precision-recall curve
    • text_clf.pr_roc_curve.get_roc_curve(path_to_model_folder) -
      get false positive rate (fpr) and true positive rate (tpr) metrics for roc curve
    • text_clf.pr_roc_curve.plot_precision_recall_curve(precision, recall) -
      plot precision-recall curve
    • text_clf.pr_roc_curve.plot_roc_curve(fpr, tpr) -
      plot roc curve
    • text_clf.pr_roc_curve.plot_precision_recall_f1_curves_for_thresholds(precision, recall, thresholds) -
      plot precision, recall, f1-score curves for probability thresholds

    arbitrary save folder name (config.yaml)

    experiment_name: model
    
    Source code(tar.gz)
    Source code(zip)
  • v0.1.4(Oct 10, 2021)

    • fixed load_20newsgroups.py (#65 #71)
    • added Makefile (#71)
    • added logging confusion matrix (#72)
    • replaced all "valid" occurrences with "test" (#74)
    • updated docstrings (#77)
    • changed python interface - train function returns model and target_names_mapping (#78)
    Source code(tar.gz)
    Source code(zip)
  • v0.1.3(Sep 2, 2021)

  • v0.1.2(Aug 19, 2021)

  • v0.1.1(Aug 11, 2021)

  • v0.1.0(Aug 7, 2021)

Owner
Dani El-Ayyass
NLP Tech Lead @ Sber AI, Master Student in Applied Mathematics and Computer Science @ CMC MSU
Dani El-Ayyass
Pytorch-version BERT-flow: One can apply BERT-flow to any PLM within Pytorch framework.

Pytorch-version BERT-flow: One can apply BERT-flow to any PLM within Pytorch framework.

Ubiquitous Knowledge Processing Lab 59 Dec 01, 2022
Translators - is a library which aims to bring free, multiple, enjoyable translation to individuals and students in Python

Translators - is a library which aims to bring free, multiple, enjoyable translation to individuals and students in Python

UlionTse 907 Dec 27, 2022
NeuTex: Neural Texture Mapping for Volumetric Neural Rendering

NeuTex: Neural Texture Mapping for Volumetric Neural Rendering Paper: https://arxiv.org/abs/2103.00762 Running Run on the provided DTU scene cd run ba

Fanbo Xiang 68 Jan 06, 2023
BERN2: an advanced neural biomedical namedentity recognition and normalization tool

BERN2 We present BERN2 (Advanced Biomedical Entity Recognition and Normalization), a tool that improves the previous neural network-based NER tool by

DMIS Laboratory - Korea University 99 Jan 06, 2023
Mednlp - Medical natural language parsing and utility library

Medical natural language parsing and utility library A natural language medical

Paul Landes 3 Aug 24, 2022
spaCy plugin for Transformers , Udify, ELmo, etc.

Camphr - spaCy plugin for Transformers, Udify, Elmo, etc. Camphr is a Natural Language Processing library that helps in seamless integration for a wid

342 Nov 21, 2022
Python module (C extension and plain python) implementing Aho-Corasick algorithm

pyahocorasick pyahocorasick is a fast and memory efficient library for exact or approximate multi-pattern string search meaning that you can find mult

Wojciech Muła 763 Dec 27, 2022
GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot, a language model

GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot, a language model -- based on GPT-3, called GPT-Codex -- that is fine-tuned on publicly available code from GitHub.

Nathan Cooper 2.3k Jan 01, 2023
Mysticbbs-rjam - rJAM splitscreen message reader for MysticBBS A46+

rJAM splitscreen message reader for MysticBBS A46+

Robbert Langezaal 4 Nov 22, 2022
A python package for deep multilingual punctuation prediction.

This python library predicts the punctuation of English, Italian, French and German texts. We developed it to restore the punctuation of transcribed spoken language.

Oliver Guhr 27 Dec 22, 2022
Flexible interface for high-performance research using SOTA Transformers leveraging Pytorch Lightning, Transformers, and Hydra.

Flexible interface for high performance research using SOTA Transformers leveraging Pytorch Lightning, Transformers, and Hydra. What is Lightning Tran

Pytorch Lightning 581 Dec 21, 2022
MHtyper is an end-to-end pipeline for recognized the Forensic microhaplotypes in Nanopore sequencing data.

MHtyper is an end-to-end pipeline for recognized the Forensic microhaplotypes in Nanopore sequencing data. It is implemented using Python.

willow 6 Jun 27, 2022
FedNLP: A Benchmarking Framework for Federated Learning in Natural Language Processing

FedNLP is a research-oriented benchmarking framework for advancing federated learning (FL) in natural language processing (NLP). It uses FedML repository as the git submodule. In other words, FedNLP

FedML-AI 216 Nov 27, 2022
基于Transformer的单模型、多尺度的VAE模型

UniVAE 基于Transformer的单模型、多尺度的VAE模型 介绍 https://kexue.fm/archives/8475 依赖 需要大于0.10.6版本的bert4keras(当前还没有推到pypi上,可以直接从GitHub上clone最新版)。 引用 @misc{univae,

苏剑林(Jianlin Su) 49 Aug 24, 2022
Understanding the Difficulty of Training Transformers

Admin Understanding the Difficulty of Training Transformers Guided by our analyses, we propose Adaptive Model Initialization (Admin), which successful

Liyuan Liu 300 Dec 29, 2022
Open Source Neural Machine Translation in PyTorch

OpenNMT-py: Open-Source Neural Machine Translation OpenNMT-py is the PyTorch version of the OpenNMT project, an open-source (MIT) neural machine trans

OpenNMT 5.8k Jan 04, 2023
Words_And_Phrases - Just a repo for useful words and phrases that might come handy in some scenarios. Feel free to add yours

Words_And_Phrases Just a repo for useful words and phrases that might come handy in some scenarios. Feel free to add yours Abbreviations Abbreviation

Subhadeep Mandal 1 Feb 01, 2022
A Pytorch implementation of "Splitter: Learning Node Representations that Capture Multiple Social Contexts" (WWW 2019).

Splitter ⠀⠀ A PyTorch implementation of Splitter: Learning Node Representations that Capture Multiple Social Contexts (WWW 2019). Abstract Recent inte

Benedek Rozemberczki 201 Nov 09, 2022
Statistics and Mathematics for Machine Learning, Deep Learning , Deep NLP

Stat4ML Statistics and Mathematics for Machine Learning, Deep Learning , Deep NLP This is the first course from our trio courses: Statistics Foundatio

Omid Safarzadeh 83 Dec 29, 2022
profile tools for pytorch nn models

nnprof Introduction nnprof is a profile tool for pytorch neural networks. Features multi profile mode: nnprof support 4 profile mode: Layer level, Ope

Feng Wang 42 Jul 09, 2022