GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot, a language model

Overview

GPT-Code-Clippy (GPT-CC)

Please refer to our new GitHub Wiki which documents our efforts in detail in creating the open source version of GitHub Copilot



Courtesy of the awesome Aimee Trevett!

Introduction

GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot, a language model -- based on GPT-3, called GPT-Codex -- that is fine-tuned on publicly available code from GitHub.

Datasets

The dataset used to train GPT-CC is obtained from SEART GitHub Search using the following criteria:

  • >10 GitHub stars
  • >2 commits
  • Must have a licence
  • Exclude forks
  • Size < 70708 bytes

These repositories are then combined with all of the GitHub repositories contain in The Pile.

The repositories are then filtered for duplicate files. Filtering is performed by regexing each file in each repository to obtain a list of "variables" (the tokens which only contain alphanumeric characters) and then filtering out any files which contain the same sequence of "variables. The deduplication script is available here.

The final dataset is available here. The dataset without the duplicates filtered out is also available here.

The datasheet discussing in more detail the construction, usage, and limitation of the dataset can be found here. We hope to get it officially into Huggingface's datasets library soon!

Models

The GPT-CC models are fine-tuned versions of GPT-2 and GPT-Neo.

The available models can be found here

The ones that perform relatively well (None improve on the standard GPT-Neo 125M model except for APPs specific models and only for the APPs task):

TODO: which is the recommended model?

Training

Training is done using the training scripts available here.

For fine-tuning GPTNeo-125M on CodeClippy dataset we used AdamW optimizer (beta1=0.9, beta2=0.95) with GPT3-like learning rate schedule (4k warmup steps from 0 to 5e-5 followed by 50k cosine decay steps to 5e-6), weight decay 0.1 and batch size 1024, sequence length 2048. The choice of relatively large batch size and low LR with long warmup are made to avoid agressive updates and preserve the knowledge contained in pretrained GPTNeo weights.

For fine-tuning GPTNe0-125M on APPS dataset we used AdamW optimizer (beta1=0.9, beta2=0.98) with linear learning rate schedule (800 warmup steps from 0 to peak LR followed by linear decay to 0, a range of value for peak LR was [1e-5; 1e-4]), weight decay 0.1 and batch size 256, sequence length 1024. We trained model for 5 epochs selecting best checkpoint judging by validation loss. The language modelling objective for APPS dataset is modified to backpropagate loss only for the tokens corresponding to code solution (refer to Hendrycks et al for more details).

For fine-tuning GPTNe0-1.3B on APPS dataset we used Adafactor optimizer with linear learning rate schedule (5k warmup steps from 0 to 2e-5 followed by linear decay to 0), weight decay 0.1 and batch size 24, sequence length 1024. The choice of hyperparameters for 1.3B model is in part determined by hardware limitations. We trained model for 5 epochs selecting best checkpoint judging by validation loss.

TODO: which is the recommended way to train GPT-CC?

Evaluation

The models are also evaluated on the APPS and HumanEval datasets.

Human Eval Results

Model [email protected] [email protected] [email protected] [email protected]
EleutherAI/gpt-neo 0.12% 0.24% 0.61% 1.22%
gpt-neo-125M-apps 0.06% 0.12% 0.30% 0.61%
dedup-filtered-no-resize-2048bs 0.00% 0.00% 0.00% 0.00%
1024-filtered 0.00% 0.00% 0.00% 0.00%
dedup-2048 0.00% 0.00% 0.00% 0.00%

APPS Eval Results

Coming soon...

Demo

A Visual Studio Code which uses the HuggingFace Inference API is available and can be found here.

We also have Huggingface's Space demo where you can specify and problem in the format of a programming competition question.

TODO: more information about this when complete.

Further Reading

For more information about GPT-CC, GitHub Copilot, etc, see:

TODO: add more further reading.

Acknowledgements

Special thanks to our contributors!!

Owner
Nathan Cooper
I'm a nerd.
Nathan Cooper
This repository contains the code for "Generating Datasets with Pretrained Language Models".

Datasets from Instructions (DINO 🦕 ) This repository contains the code for Generating Datasets with Pretrained Language Models. The paper introduces

Timo Schick 154 Jan 01, 2023
SGMC: Spectral Graph Matrix Completion

SGMC: Spectral Graph Matrix Completion Code for AAAI21 paper "Scalable and Explainable 1-Bit Matrix Completion via Graph Signal Learning". Data Format

Chao Chen 8 Dec 12, 2022
Nystromformer: A Nystrom-based Algorithm for Approximating Self-Attention

Nystromformer: A Nystrom-based Algorithm for Approximating Self-Attention April 6, 2021 We extended segment-means to compute landmarks without requiri

Zhanpeng Zeng 322 Jan 01, 2023
Knowledge Management for Humans using Machine Learning & Tags

HyperTag helps humans intuitively express how they think about their files using tags and machine learning. Represent how you think using tags. Find what you look for using semantic search for your t

Ravn Tech, Inc. 166 Jan 07, 2023
📝An easy-to-use package to restore punctuation of the text.

✏️ rpunct - Restore Punctuation This repo contains code for Punctuation restoration. This package is intended for direct use as a punctuation restorat

Daulet Nurmanbetov 72 Dec 30, 2022
End-2-end speech synthesis with recurrent neural networks

Introduction New: Interactive demo using Google Colaboratory can be found here TTS-Cube is an end-2-end speech synthesis system that provides a full p

Tiberiu Boros 214 Dec 07, 2022
Yes it's true :broken_heart:

Information WARNING: No longer hosted If you would like to be on this repo's readme simply fork or star it! Forks 1 - Flowzii 2 - Errorcrafter 3 - vk-

Dropout 66 Dec 31, 2022
Text classification is one of the popular tasks in NLP that allows a program to classify free-text documents based on pre-defined classes.

Deep-Learning-for-Text-Document-Classification Text classification is one of the popular tasks in NLP that allows a program to classify free-text docu

Happy N. Monday 2 Mar 17, 2022
Chinese named entity recognization (bert/roberta/macbert/bert_wwm with Keras)

Chinese named entity recognization (bert/roberta/macbert/bert_wwm with Keras)

2 Jul 05, 2022
Partially offline multi-language translator built upon Huggingface transformers.

Translate Command-line interface to translation pipelines, powered by Huggingface transformers. This tool can download translation models, and then us

Richard Jarry 8 Oct 25, 2022
OceanScript is an Esoteric language used to encode and decode text into a formulation of characters

OceanScript is an Esoteric language used to encode and decode text into a formulation of characters - where the final result looks like waves in the ocean.

Code and datasets for our paper "PTR: Prompt Tuning with Rules for Text Classification"

PTR Code and datasets for our paper "PTR: Prompt Tuning with Rules for Text Classification" If you use the code, please cite the following paper: @art

THUNLP 118 Dec 30, 2022
pkuseg多领域中文分词工具; The pkuseg toolkit for multi-domain Chinese word segmentation

pkuseg:一个多领域中文分词工具包 (English Version) pkuseg 是基于论文[Luo et. al, 2019]的工具包。其简单易用,支持细分领域分词,有效提升了分词准确度。 目录 主要亮点 编译和安装 各类分词工具包的性能对比 使用方式 论文引用 作者 常见问题及解答 主要

LancoPKU 6k Dec 29, 2022
Disfl-QA: A Benchmark Dataset for Understanding Disfluencies in Question Answering

Disfl-QA is a targeted dataset for contextual disfluencies in an information seeking setting, namely question answering over Wikipedia passages. Disfl-QA builds upon the SQuAD-v2 (Rajpurkar et al., 2

Google Research Datasets 52 Jun 21, 2022
Official Stanford NLP Python Library for Many Human Languages

Official Stanford NLP Python Library for Many Human Languages

Stanford NLP 6.4k Jan 02, 2023
This repository is home to the Optimus data transformation plugins for various data processing needs.

Transformers Optimus's transformation plugins are implementations of Task and Hook interfaces that allows execution of arbitrary jobs in optimus. To i

Open Data Platform 37 Dec 14, 2022
Prompt-learning is the latest paradigm to adapt pre-trained language models (PLMs) to downstream NLP tasks

Prompt-learning is the latest paradigm to adapt pre-trained language models (PLMs) to downstream NLP tasks, which modifies the input text with a textual template and directly uses PLMs to conduct pre

THUNLP 2.3k Jan 08, 2023
Implementation of COCO-LM, Correcting and Contrasting Text Sequences for Language Model Pretraining, in Pytorch

COCO LM Pretraining (wip) Implementation of COCO-LM, Correcting and Contrasting Text Sequences for Language Model Pretraining, in Pytorch. They were a

Phil Wang 44 Jul 28, 2022
State of the art faster Natural Language Processing in Tensorflow 2.0 .

tf-transformers: faster and easier state-of-the-art NLP in TensorFlow 2.0 ****************************************************************************

74 Dec 05, 2022
DensePhrases provides answers to your natural language questions from the entire Wikipedia in real-time

DensePhrases provides answers to your natural language questions from the entire Wikipedia in real-time. While it efficiently searches the answers out of 60 billion phrases in Wikipedia, it is also v

Jinhyuk Lee 543 Jan 08, 2023