A library for end-to-end learning of embedding index and retrieval model

Related tags

Text Data & NLPpoeem
Overview

Poeem

Poeem is a library for efficient approximate nearest neighbor (ANN) search, which has been widely adopted in industrial recommendation, advertising and search systems. Apart from other libraries, such as Faiss and ScaNN, which build embedding indexes with already learned embeddings, Poeem jointly learn the embedding index together with retrieval model in order to avoid the quantization distortion. Consequentially, Poeem is proved to outperform the previous methods significantly, as shown in our SIGIR paper. Poeem is written based on Tensorflow GPU version 1.15, and some of the core functionalities are written in C++, as custom TensorFlow ops. It is developed by JD.com Search.

For more details, check out our SIGIR 2021 paper here.

Content

System Requirements

  • We only support Linux systems for now, e.g., CentOS and Ubuntu. Windows users might need to build the library from source.
  • Python 3.6 installation.
  • TensorFlow GPU version 1.15 (pip install tensorflow-gpu==1.15.0). Other TensorFlow versions are not tested.
  • CUDA toolkit 10.1, required by TensorFlow GPU 1.15.

Quick Start

Poeem aims at an almost drop-in utility for training and serving large scale embedding retrieval models. We try to make it easy to use as much as we can.

Install

Install poeem for most Linux system can be done easily with pip.

$ pip install poeem

Quick usage

As an extreme simple example, you can use Poeem simply by the following commands

>>> import tensorflow as tf, poeem
>>> hparams = poeem.embedding.PoeemHparam()
>>> poeem_indexing_layer = poeem.embedding.PoeemEmbed(64, hparams)
>>> emb = tf.random.normal([100, 64])  # original embedding before indexing layer
>>> emb_quantized, coarse_code, code, regularizer = poeem_indexing_layer.forward(emb)
>>> emb = emb - tf.stop_gradient(emb - emb_quantized)   # use this embedding for downstream computation
>>> with tf.Session() as sess:
>>>   sess.run(tf.global_variables_initializer())
>>>   sess.run(emb)

Tutorial

The above simple example, as a quick start, does not show how to build embedding index and how to serve it online. Experienced or advanced users who are interested in applying it in real-world or industrial system, can further read the tutorials.

Authors

The main authors of Poeem are:

  • Han Zhang wrote most Python models and conducted most of experiments.
  • Hongwei Shen wrote most of the C++ TensorFlow ops and managed the pip released package.
  • Yunjiang Jiang developed the rotation algorithm and wrote the related code.
  • Wen-Yun Yang initiated the Poeem project, wrote some of TensorFlow ops, integrated different parts and wrote the tutorials.

How to Cite

Reference to cite if you use Poeem in a research paper or in a real-world system

  @inproceeding{poeem_sigir21,
    title={Joint Learning of Deep Retrieval Model and Product Quantization based Embedding Index},
    author={Han Zhang, Hongwei Shen, Yiming Qiu, Yunjiang Jiang, Songlin Wang, Sulong Xu, Yun Xiao, Bo Long and Wen-Yun Yang},
    booktitle={The 44th International ACM SIGIR Conference on Research and Development in Information Retrieval},
    pages={},
    year={2021}
}

License

MIT licensed

Natural language Understanding Toolkit

Natural language Understanding Toolkit TOC Requirements Installation Documentation CLSCL NER References Requirements To install nut you need: Python 2

Peter Prettenhofer 119 Oct 08, 2022
Simple Annotated implementation of GPT-NeoX in PyTorch

Simple Annotated implementation of GPT-NeoX in PyTorch This is a simpler implementation of GPT-NeoX in PyTorch. We have taken out several optimization

labml.ai 101 Dec 03, 2022
SimCSE: Simple Contrastive Learning of Sentence Embeddings

SimCSE: Simple Contrastive Learning of Sentence Embeddings This repository contains the code and pre-trained models for our paper SimCSE: Simple Contr

Princeton Natural Language Processing 2.5k Jan 07, 2023
Asr abc - Automatic speech recognition(ASR),中文语音识别

语音识别的简单示例,主要在课堂演示使用 创建python虚拟环境 在linux 和macos 上验证通过 # 如果已经有pyhon3.6 环境,跳过该步骤,使用

LIyong.Guo 8 Nov 11, 2022
An assignment on creating a minimalist neural network toolkit for CS11-747

minnn by Graham Neubig, Zhisong Zhang, and Divyansh Kaushik This is an exercise in developing a minimalist neural network toolkit for NLP, part of Car

Graham Neubig 63 Dec 29, 2022
Implementation / replication of DALL-E, OpenAI's Text to Image Transformer, in Pytorch

Implementation / replication of DALL-E, OpenAI's Text to Image Transformer, in Pytorch

Phil Wang 5k Jan 02, 2023
Translation to python of Chris Sims' optimization function

pycsminwel This is a locol minimization algorithm. Uses a quasi-Newton method with BFGS update of the estimated inverse hessian. It is robust against

Gustavo Amarante 1 Mar 21, 2022
Coreference resolution for English, French, German and Polish, optimised for limited training data and easily extensible for further languages

Coreferee Author: Richard Paul Hudson, Explosion AI 1. Introduction 1.1 The basic idea 1.2 Getting started 1.2.1 English 1.2.2 French 1.2.3 German 1.2

Explosion 70 Dec 12, 2022
Local cross-platform machine translation GUI, based on CTranslate2

DesktopTranslator Local cross-platform machine translation GUI, based on CTranslate2 Download Windows Installer You can either download a ready-made W

Yasmin Moslem 29 Jan 05, 2023
One Stop Anomaly Shop: Anomaly detection using two-phase approach: (a) pre-labeling using statistics, Natural Language Processing and static rules; (b) anomaly scoring using supervised and unsupervised machine learning.

One Stop Anomaly Shop (OSAS) Quick start guide Step 1: Get/build the docker image Option 1: Use precompiled image (might not reflect latest changes):

Adobe, Inc. 148 Dec 26, 2022
DANeS is an open-source E-newspaper dataset by collaboration between DATASET JSC (dataset.vn) and AIV Group (aivgroup.vn)

DANeS - Open-source E-newspaper dataset Source: Technology vector created by macrovector - www.freepik.com. DANeS is an open-source E-newspaper datase

DATASET .JSC 64 Aug 17, 2022
[KBS] Aspect-based sentiment analysis via affective knowledge enhanced graph convolutional networks

#Sentic GCN Introduction This repository was used in our paper: Aspect-Based Sentiment Analysis via Affective Knowledge Enhanced Graph Convolutional N

Akuchi 35 Nov 16, 2022
FB ID CLONER WUTHOT CHECKPOINT, FACEBOOK ID CLONE FROM FILE

* MY SOCIAL MEDIA : Programming And Memes Want to contact Mr. Error ? CONTACT : [ema

Mr. Error 9 Jun 17, 2021
In this project, we compared Spanish BERT and Multilingual BERT in the Sentiment Analysis task.

Applying BERT Fine Tuning to Sentiment Classification on Amazon Reviews Abstract Sentiment analysis has made great progress in recent years, due to th

Alexander Leonardo Lique Lamas 5 Jan 03, 2022
Natural Language Processing Specialization

Natural Language Processing Specialization In this folder, Natural Language Processing Specialization projects and notes can be found. WHAT I LEARNED

Kaan BOKE 3 Oct 06, 2022
Toward Model Interpretability in Medical NLP

Toward Model Interpretability in Medical NLP LING380: Topics in Computational Linguistics Final Project James Cross ( 1 Mar 04, 2022

Python package to easily retrain OpenAI's GPT-2 text-generating model on new texts

gpt-2-simple A simple Python package that wraps existing model fine-tuning and generation scripts for OpenAI's GPT-2 text generation model (specifical

Max Woolf 3.1k Jan 07, 2023
NL. The natural language programming language.

NL A Natural-Language programming language. Built using Codex. A few examples are inside the nl_projects directory. How it works Write any code in pur

2 Jan 17, 2022
TPlinker for NER 中文/英文命名实体识别

本项目是参考 TPLinker 中HandshakingTagging思想,将TPLinker由原来的关系抽取(RE)模型修改为命名实体识别(NER)模型。

GodK 113 Dec 28, 2022
Tools, wrappers, etc... for data science with a concentration on text processing

Rosetta Tools for data science with a focus on text processing. Focuses on "medium data", i.e. data too big to fit into memory but too small to necess

207 Nov 22, 2022