Various capabilities for static malware analysis.

Overview

Malchive

The malchive serves as a compendium for a variety of capabilities mainly pertaining to malware analysis, such as scripts supporting day to day binary analysis and decoder modules for various components of malicious code.

The goals behind the 'malchive' are to:

  • Allow teams to centralize efforts made in this realm and enforce communication and continuity
  • Have a shared corpus of tools for people to build on
  • Enforce clean coding practices
  • Allow others to interface with project members to develop their own capabilities
  • Promote a positive feedback loop between Threat Intel and Reverse Engineering staff
  • Make static file analysis more accessible
  • Serve as a vehicle to communicate the unique opportunity space identified via deep dive analysis

Documentation

At its core, malchive is a bunch of standalone scripts organized in a manner that the authors hope promotes the project's goals.

To view the documentation associated with this project, checkout the wiki page!

Scripts within the malchive are split up into the following core categories:

  • Utilities - These scripts may be run standalone to assist with static binary analysis or as modules supporting a broader program. Utilities always have a standalone component.
  • Helpers - These modules primarily serve to assist components in one or more of the other categories. They generally do not have a stand-alone component and instead serve the intents of those that do.
  • Binary Decoders - The purpose of scripts in this category is to retrieve, decrypt, and return embedded data (typically inside malware).
  • Active Discovery - Standalone scripts designed to emulate a small portion of a malware family's protocol for the purposes of discovering active controllers.

Installation

The malchive is a packaged distribution that is easily installed and will automatically create console stand-alone scripts.

Steps

You will need to install some dependencies for some of the required Python modules to function correctly.

  • First do a source install of YARA and make sure you compile using --dotnet
  • Next source install the YARA Python package.
  • Ensure you have sqlite3-dev installed
    • Debian: libsqlite3-dev
    • Red Hat: sqlite-devel / pip install pysqlite3

You can then clone the malchive repo and install...

  • pip install . when in the parent directory.
  • To remove, just pip uninstall malchive

Scripts

Console scripts stemming from utilities are appended with the prefix malutil, decoders are appended with maldec, and active discovery scripts are appended with maldisc. This allows for easily identifiable malchive scripts via tab autocompletion.

; running superstrings from cmd line
malutil-superstrings 1.exe -ss
0x9535 (stack) lstrlenA
0x9592 (stack) GetFileSize
0x95dd (stack) WriteFile
0x963e (stack) CreateFileA
0x96b0 (stack) SetFilePointer
0x9707 (stack) GetSystemDirectoryA

; running a decoder from cmd line
maldec-pivy test.exe_
{
    "MD5": "2973ee05b13a575c06d23891ab83e067",
    "Config": {
        "PersistActiveSetupName": "StubPath",
        "DefaultBrowserKey": "SOFTWARE\\Classes\\http\\shell\\open\\command",
        "PersistActiveSetupKeyPart": "Software\\Microsoft\\Active Setup\\Installed Components\\",
        "ServerId": "TEST - WIN_XP",
        "Callbacks": [
            {
                "callback": "192.168.1.104",
                "protocol": "Direct",
                "port": 3333
            },
            {
                "callback": "192.168.1.111",
                "protocol": "Direct",
                "port": 4444
            }
        ],
        "ProxyCfgPresent": false,
        "Password": "test$321$",
        "Mutex": ")#V0qA.I4",
        "CopyAsADS": true,
        "Melt": true,
        "InjectPersist": true,
        "Inject": true
    }
}

; cmd line use with other common utilities
echo -ne 'eJw9kLFuwzAMRIEC7ZylrVGgRSFZiUbBZmwqsMUP0VfcnuQn+rMde7KLTBIPj0ce34tHyMUJjrnw
p3apz1kicjoJrDRlQihwOXmpL4RmSR5qhEU9MqvgWo8XqGMLJd+sKNQPK0dIGjK+e5WANIT6NeOs
k2mI5NmYAmcrkbn4oLPK5gZX+hVlRoKloMV20uQknv2EPunHKQtcig1cpHY4Jodie5pRViV+rp1t
629J6Dyu4hwLR97LINqY5rYILm1hhlvinoyJZavOKTrwBHTwpZ9yPSzidUiPt8PUTkZ0FBfayWLp
a71e8U8YDrbtu0aWDj+/eBOu+jRkYabX+3hPu9LZ5fb41T+7fmRf' | base64 -d | zlib-flate -uncompress | malutil-xor - [KEY]

Interfacing

Utilities, decoders, and discovery scripts in this collection are designed to support single ad-hoc analysis as well as inclusion into other frameworks. After installation, the malchive should be part of your Python path. At this point accessing any of the scripts is straight forward.

Here are a few examples:

; accessing decoder modules
import sys
from malchive.decoders import testdecoder

p = testdecoder.GetConfig(open(sys.argv[1], 'rb').read())
print('password', p.rc4_key)
for c in p.callbacks:
    print('c2 address', c)

; accessing utilities
from malchive.utilities import xor
ret = xor.GenericXor(buff=b'testing', key=[0x51], count=0xff)
print(ret.run_crypt())

; accessing helpers
from malchive.helpers import winfunc
key = winfunc.CryptDeriveKey(b'testdatatestdata')

To understand more about a given module, see the associated wiki entry.

Contributing

Contributing to the malchive is easy, just ensure the following requirements are met:

  • When writing utilities, decoders, or discovery scripts, consider using the available templates or review existing code if you're not sure how to get started.
  • Make sure modification or contributions pass pre-commit tests.
  • Ensure the contribution is placed in one of the component folders.
  • Updated the setup file if needed with an entry.
  • Python3 is a must.

Legal

©2021 The MITRE Corporation. ALL RIGHTS RESERVED.

Approved for Public Release; Distribution Unlimited. Public Release Case Number 21-0153

Owner
MITRE Cybersecurity
MITRE Cybersecurity
AIDynamicTextReader - A simple dynamic text reader based on Artificial intelligence

AI Dynamic Text Reader: This is a simple dynamic text reader based on Artificial

Md. Rakibul Islam 1 Jan 18, 2022
A Fast Sequence Transducer Implementation with PyTorch Bindings

transducer A Fast Sequence Transducer Implementation with PyTorch Bindings. The corresponding publication is Sequence Transduction with Recurrent Neur

Awni Hannun 184 Dec 18, 2022
AI-Broad-casting - AI Broad casting with python

Basic Code 1. Use The Code Configuration Environment conda create -n code_base p

Full Spectrum Bioinformatics - a free online text designed to introduce key topics in Bioinformatics using the Python

Full Spectrum Bioinformatics is a free online text designed to introduce key topics in Bioinformatics using the Python programming language. The text is written in interactive Jupyter Notebooks, whic

Jesse Zaneveld 33 Dec 28, 2022
端到端的长本文摘要模型(法研杯2020司法摘要赛道)

端到端的长文本摘要模型(法研杯2020司法摘要赛道)

苏剑林(Jianlin Su) 334 Jan 08, 2023
Chatbot with Pytorch, Python & Nextjs

Installation Instructions Make sure that you have Python 3, gcc, venv, and pip installed. Clone the repository $ git clone https://github.com/sahr

Rohit Sah 0 Dec 11, 2022
Fast, DB Backed pretrained word embeddings for natural language processing.

Embeddings Embeddings is a python package that provides pretrained word embeddings for natural language processing and machine learning. Instead of lo

Victor Zhong 212 Nov 21, 2022
Use the power of GPT3 to execute any function inside your programs just by giving some doctests

gptrun Don't feel like coding today? Use the power of GPT3 to execute any function inside your programs just by giving some doctests. How is this diff

Roberto Abdelkader Martínez Pérez 11 Nov 11, 2022
A tool helps build a talk preview image by combining the given background image and talk event description

talk-preview-img-builder A tool helps build a talk preview image by combining the given background image and talk event description Installation and U

PyCon Taiwan 4 Aug 20, 2022
SNCSE: Contrastive Learning for Unsupervised Sentence Embedding with Soft Negative Samples

SNCSE SNCSE: Contrastive Learning for Unsupervised Sentence Embedding with Soft Negative Samples This is the repository for SNCSE. SNCSE aims to allev

Sense-GVT 59 Jan 02, 2023
A benchmark for evaluation and comparison of various NLP tasks in Persian language.

Persian NLP Benchmark The repository aims to track existing natural language processing models and evaluate their performance on well-known datasets.

Mofid AI 68 Dec 19, 2022
Finding Label and Model Errors in Perception Data With Learned Observation Assertions

Finding Label and Model Errors in Perception Data With Learned Observation Assertions This is the project page for Finding Label and Model Errors in P

Stanford Future Data Systems 17 Oct 14, 2022
Yet another Python binding for fastText

pyfasttext Warning! pyfasttext is no longer maintained: use the official Python binding from the fastText repository: https://github.com/facebookresea

Vincent Rasneur 230 Nov 16, 2022
Espial is an engine for automated organization and discovery of personal knowledge

Live Demo (currently not running, on it) Espial is an engine for automated organization and discovery in knowledge bases. It can be adapted to run wit

Uzay-G 159 Dec 30, 2022
ElasticBERT: A pre-trained model with multi-exit transformer architecture.

This repository contains finetuning code and checkpoints for ElasticBERT. Towards Efficient NLP: A Standard Evaluation and A Strong Baseli

fastNLP 48 Dec 14, 2022
This is a NLP based project to extract effective date of the contract from their text files.

Date-Extraction-from-Contracts This is a NLP based project to extract effective date of the contract from their text files. Problem statement This is

Sambhav Garg 1 Jan 26, 2022
Model for recasing and repunctuating ASR transcripts

Recasing and punctuation model based on Bert Benoit Favre 2021 This system converts a sequence of lowercase tokens without punctuation to a sequence o

Benoit Favre 88 Dec 29, 2022
Natural language processing summarizer using 3 state of the art Transformer models: BERT, GPT2, and T5

NLP-Summarizer Natural language processing summarizer using 3 state of the art Transformer models: BERT, GPT2, and T5 This project aimed to provide in

Samuel Sharkey 1 Feb 07, 2022
Nested Named Entity Recognition

Nested Named Entity Recognition Training Dataset: CBLUE: A Chinese Biomedical Language Understanding Evaluation Benchmark url: https://tianchi.aliyun.

8 Dec 25, 2022