Use the state-of-the-art m2m100 to translate large data on CPU/GPU/TPU. Super Easy!

Overview



Twitter License Transformers Accelerate Author

Easy-Translate is a script for translating large text files in your machine using the M2M100 models from Facebook/Meta AI. We also privide a script for Easy-Evaluation of your translations 🥳

M2M100 is a multilingual encoder-decoder (seq-to-seq) model trained for Many-to-Many multilingual translation introduced in this paper and first released in this repository.

M2M100 can directly translate between 9,900 directions of 100 languages.

Easy-Translate is built on top of 🤗 HuggingFace's Transformers and 🤗 HuggingFace's Accelerate library.

We currently support:

  • CPU / multi-CPU / GPU / multi-GPU / TPU acceleration
  • BF16 / FP16 / FP32 precision.
  • Automatic batch size finder: Forget CUDA OOM errors. Set an initial batch size, if it doesn't fit, we will automatically adjust it.
  • Sharded Data Parallel to load huge models sharded on multiple GPUs (See: https://huggingface.co/docs/accelerate/fsdp).

Test the 🔌 Online Demo here: https://huggingface.co/spaces/Iker/Translate-100-languages

Supported languages

See the Supported languages table for a table of the supported languages and their ids.

List of supported languages: Afrikaans, Amharic, Arabic, Asturian, Azerbaijani, Bashkir, Belarusian, Bulgarian, Bengali, Breton, Bosnian, Catalan, Cebuano, Czech, Welsh, Danish, German, Greeek, English, Spanish, Estonian, Persian, Fulah, Finnish, French, WesternFrisian, Irish, Gaelic, Galician, Gujarati, Hausa, Hebrew, Hindi, Croatian, Haitian, Hungarian, Armenian, Indonesian, Igbo, Iloko, Icelandic, Italian, Japanese, Javanese, Georgian, Kazakh, CentralKhmer, Kannada, Korean, Luxembourgish, Ganda, Lingala, Lao, Lithuanian, Latvian, Malagasy, Macedonian, Malayalam, Mongolian, Marathi, Malay, Burmese, Nepali, Dutch, Norwegian, NorthernSotho, Occitan, Oriya, Panjabi, Polish, Pushto, Portuguese, Romanian, Russian, Sindhi, Sinhala, Slovak, Slovenian, Somali, Albanian, Serbian, Swati, Sundanese, Swedish, Swahili, Tamil, Thai, Tagalog, Tswana, Turkish, Ukrainian, Urdu, Uzbek, Vietnamese, Wolof, Xhosa, Yiddish, Yoruba, Chinese, Zulu

Supported Models

Requirements

Pytorch >= 1.10.0
See: https://pytorch.org/get-started/locally/

Accelerate >= 0.7.1
pip install --upgrade accelerate

HuggingFace Transformers 
pip install --upgrade transformers

Translate a file

Run python translate.py -h for more info.

Using a single CPU / GPU

accelerate launch translate.py \
--sentences_path sample_text/en.txt \
--output_path sample_text/en2es.translation.m2m100_1.2B.txt \
--source_lang en \
--target_lang es \
--model_name facebook/m2m100_1.2B

Multi-GPU

See Accelerate documentation for more information (multi-node, TPU, Sharded model...): https://huggingface.co/docs/accelerate/index
You can use the Accelerate CLI to configure the Accelerate environment (Run accelerate config in your terminal) instead of using the --multi_gpu and --num_processes flags.

# Use 2 GPUs
accelerate launch --multi_gpu --num_processes 2 --num_machines 1 translate.py \
--sentences_path sample_text/en.txt \
--output_path sample_text/en2es.translation.m2m100_1.2B.txt \
--source_lang en \
--target_lang es \
--model_name facebook/m2m100_1.2B

Automatic batch size finder

We will automatically find a batch size that fits in your GPU memory. The default initial batch size is 128 (You can set it with the --starting_batch_size 128 flag). If we find an Out Of Memory error, we will automatically decrease the batch size until we find a working one.

Choose precision

Use the --precision flag to choose the precision of the model. You can choose between: bf16, fp16 and 32.

accelerate launch translate.py \
--sentences_path sample_text/en.txt \
--output_path sample_text/en2es.translation.m2m100_1.2B.txt \
--source_lang en \
--target_lang es \
--model_name facebook/m2m100_1.2B \
--precision fp16 

Evaluate translations

To run the evaluation script you need to install bert_score: pip install bert_score and 🤗 HuggingFace's Datasets model: pip install datasets.

The evaluation script will calculate the following metrics:

Run the following command to evaluate the translations:

accelerate launch eval.py \
--pred_path sample_text/es.txt \
--gold_path sample_text/en2es.translation.m2m100_1.2B.txt 

If you want to save the results to a file use the --output_path flag.

See sample_text/en2es.m2m100_1.2B.json for a sample output.

Owner
Iker García-Ferrero
PhD student in Natural Language Processing at IXA Taldea
Iker García-Ferrero
🌸 fastText + Bloom embeddings for compact, full-coverage vectors with spaCy

floret: fastText + Bloom embeddings for compact, full-coverage vectors with spaCy floret is an extended version of fastText that can produce word repr

Explosion 222 Dec 16, 2022
ACL22 paper: Imputing Out-of-Vocabulary Embeddings with LOVE Makes Language Models Robust with Little Cost

Imputing Out-of-Vocabulary Embeddings with LOVE Makes Language Models Robust with Little Cost LOVE is accpeted by ACL22 main conference as a long pape

Lihu Chen 32 Jan 03, 2023
Non-Autoregressive Predictive Coding

Non-Autoregressive Predictive Coding This repository contains the implementation of Non-Autoregressive Predictive Coding (NPC) as described in the pre

Alexander H. Liu 43 Nov 15, 2022
🐍 A hyper-fast Python module for reading/writing JSON data using Rust's serde-json.

A hyper-fast, safe Python module to read and write JSON data. Works as a drop-in replacement for Python's built-in json module. This is alpha software

Matthias 479 Jan 01, 2023
PortaSpeech - PyTorch Implementation

PortaSpeech - PyTorch Implementation PyTorch Implementation of PortaSpeech: Portable and High-Quality Generative Text-to-Speech. Model Size Module Nor

Keon Lee 276 Dec 26, 2022
GooAQ 🥑 : Google Answers to Google Questions!

This repository contains the code/data accompanying our recent work on long-form question answering.

AI2 112 Nov 06, 2022
This repository contains Python scripts for extracting linguistic features from Filipino texts.

Filipino Text Linguistic Feature Extractors This repository contains scripts for extracting linguistic features from Filipino texts. The scripts were

Joseph Imperial 1 Oct 05, 2021
IEEEXtreme15.0 Questions And Answers

IEEEXtreme15.0 Questions And Answers IEEEXtreme is a global challenge in which teams of IEEE Student members – advised and proctored by an IEEE member

Dilan Perera 15 Oct 24, 2022
Implementaion of our ACL 2022 paper Bridging the Data Gap between Training and Inference for Unsupervised Neural Machine Translation

Bridging the Data Gap between Training and Inference for Unsupervised Neural Machine Translation This is the implementaion of our paper: Bridging the

hezw.tkcw 20 Dec 12, 2022
HiFi DeepVariant + WhatsHap workflowHiFi DeepVariant + WhatsHap workflow

HiFi DeepVariant + WhatsHap workflow Workflow steps align HiFi reads to reference with pbmm2 call small variants with DeepVariant, using two-pass meth

William Rowell 2 May 14, 2022
Grapheme-to-phoneme (G2P) conversion is the process of generating pronunciation for words based on their written form.

Neural G2P to portuguese language Grapheme-to-phoneme (G2P) conversion is the process of generating pronunciation for words based on their written for

fluz 11 Nov 16, 2022
TunBERT is the first release of a pre-trained BERT model for the Tunisian dialect using a Tunisian Common-Crawl-based dataset.

TunBERT is the first release of a pre-trained BERT model for the Tunisian dialect using a Tunisian Common-Crawl-based dataset. TunBERT was applied to three NLP downstream tasks: Sentiment Analysis (S

InstaDeep Ltd 72 Dec 09, 2022
PyWorld3 is a Python implementation of the World3 model

The World3 model revisited in Python Install & Hello World3 How to tune your own simulation Licence How to cite PyWorld3 with Bibtex References & ackn

Charles Vanwynsberghe 248 Dec 14, 2022
基于百度的语音识别,用python实现,pyaudio+pyqt

Speech-recognition 基于百度的语音识别,python3.8(conda)+pyaudio+pyqt+baidu-aip 百度有面向python

J-L 1 Jan 03, 2022
Simple Text-To-Speech Bot For Discord

Simple Text-To-Speech Bot For Discord This is a very simple TTS bot for discord made with python. For this bot you need FFMPEG, see installation to se

1 Sep 26, 2022
Spacy-ginza-ner-webapi - Named Entity Recognition API with spaCy and GiNZA

Named Entity Recognition API with spaCy and GiNZA I wrote a blog post about this

Yuki Okuda 3 Feb 27, 2022
Open solution to the Toxic Comment Classification Challenge

Starter code: Kaggle Toxic Comment Classification Challenge More competitions 🎇 Check collection of public projects 🎁 , where you can find multiple

minerva.ml 153 Jun 22, 2022
Yuqing Xie 2 Feb 17, 2022
KoBERTopic은 BERTopic을 한국어 데이터에 적용할 수 있도록 토크나이저와 BERT를 수정한 코드입니다.

KoBERTopic 모델 소개 KoBERTopic은 BERTopic을 한국어 데이터에 적용할 수 있도록 토크나이저와 BERT를 수정했습니다. 기존 BERTopic : https://github.com/MaartenGr/BERTopic/tree/05a6790b21009d

Won Joon Yoo 26 Jan 03, 2023
The simple project to separate mixed voice (2 clean voices) to 2 separate voices.

Speech Separation The simple project to separate mixed voice (2 clean voices) to 2 separate voices. Result Example (Clisk to hear the voices): mix ||

vuthede 31 Oct 30, 2022