Code to use Augmented Shapiro Wilks Stopping, as well as code for the paper "Statistically Signifigant Stopping of Neural Network Training"

Related tags

Text Data & NLPASWS
Overview

This codebase is being actively maintained, please create and issue if you have issues using it

Basics

All data files are included under losses and each folder. The main Augmented Shapiro-Wilk Stopping criterion is implemented in analysis.py, along with several helper functions and wrappers. The other comparison heuristics are also included in analysis.py, along with their wrappers. grapher.py contains all the code for generating the graphs used in the paper, and earlystopping_calculator.py includes code for generating tables and calculating some statistics from the data. hyperparameter_search.py contains all the code used to execute the grid-search on the ASWS method, along with the grid-search for the other heuristics.

Installing

If you would like to try our code, just run pip3 install git+https://github.com/justinkterry/ASWS

Example

If you wanted to try to determine the ASWS stopping point of a model, you can do so using the analysis.py file. If at anypoint during model training you wanted to perform the stop criterion test, you can do

from ASWS.analysis import aswt_stopping

test_acc = [] # for storing model accuracies
for i in training_epochs:

    model.train()
    test_accuracy = model.evaluate(test_set)
    test_acc.append(test_accuracy)
    gamma = 0.5 # fill hyperparameters as desired
    num_data = 20
    slack_prop=0.1
    count = 20

    if len(test_acc) > count:
        aswt_stop_criterion = aswt_stopping(test_acc, gamma, count, num_data, slack_prop=slack_prop)

        if aswt_stop_criterion:
            print("Stop Training")

and if you already have finished training the model and wanted to determine the ASWS stopping point, you would need a CSV with columns Epoch, Training Loss, Training Acc, Test Loss, Test Acc. You could then use the following example

from ASWS.analysis import get_aswt_stopping_point_of_model, read_file

_, _, _, test_acc = read_file("modelaccuracy.csv")
gamma = 0.5 # fill hyperparameters as desired
num_data = 20
slack_prop=0.1
count = 20

stop_epoch, stop_accuracy = get_aswt_stopping_point_of_model(test_acc, gamma=gamma, num_data=num_data, count=count, slack_prop=slack_prop)

pytorch-training

The pytorch-training folder contains the driver file for training each model, along with the model files which contain each network definition. The main.py file can be run out of the box for the models listed in the paper. The model to train is specified via the --model argument. All learning rate schedulers listed in the paper are available (via --schedule step etc.) and the ASWS learning rate scheduler is available via --schedule ASWT . The corresponding ASWS hyperparameters are passed in at the command line (for example --gamma 0.5).

Example

In order to recreate the GoogLeNet ASWT 1 scheduler from the paper, you can use the following command

python3 main.py --model GoogLeNet --schedule ASWT --gamma 0.76 --num_data 19 --slack_prop 0.05 --lr 0.1

Owner
Justin Terry
CS PhD student at UMD. I work in deep reinforcement learning.
Justin Terry
Dope Wars game engine on StarkNet L2 roll-up

RYO Dope Wars game engine on StarkNet L2 roll-up. What TI-83 drug wars built as smart contract system. Background mechanism design notion here. Initia

104 Dec 04, 2022
txtai: Build AI-powered semantic search applications in Go

txtai: Build AI-powered semantic search applications in Go txtai executes machine-learning workflows to transform data and build AI-powered semantic s

NeuML 49 Dec 06, 2022
Contains descriptions and code of the mini-projects developed in various programming languages

TexttoSpeechAndLanguageTranslator-project introduction A pleasant application where the client will be given buttons like play,reset and exit. The cli

Adarsh Reddy 1 Dec 22, 2021
Use AutoModelForSeq2SeqLM in Huggingface Transformers to train COMET

Training COMET using seq2seq setting Use AutoModelForSeq2SeqLM in Huggingface Transformers to train COMET. The codes are modified from run_summarizati

tqfang 9 Dec 17, 2022
Explore different way to mix speech model(wav2vec2, hubert) and nlp model(BART,T5,GPT) together

SpeechMix Explore different way to mix speech model(wav2vec2, hubert) and nlp model(BART,T5,GPT) together. Introduction For the same input: from datas

Eric Lam 31 Nov 07, 2022
LOT: A Benchmark for Evaluating Chinese Long Text Understanding and Generation

LOT: A Benchmark for Evaluating Chinese Long Text Understanding and Generation Tasks | Datasets | LongLM | Baselines | Paper Introduction LOT is a ben

46 Dec 28, 2022
Simple GUI where you can enter an article and get a crisp summarized version.

Text-Summarization-using-TextRank-BART Simple GUI where you can enter an article and get a crisp summarized version. How to run: Clone the repo Instal

Rohit P 4 Sep 28, 2022
multi-label,classifier,text classification,多标签文本分类,文本分类,BERT,ALBERT,multi-label-classification,seq2seq,attention,beam search

multi-label,classifier,text classification,多标签文本分类,文本分类,BERT,ALBERT,multi-label-classification,seq2seq,attention,beam search

hellonlp 30 Dec 12, 2022
Source code for the paper "TearingNet: Point Cloud Autoencoder to Learn Topology-Friendly Representations"

TearingNet: Point Cloud Autoencoder to Learn Topology-Friendly Representations Created by Jiahao Pang, Duanshun Li, and Dong Tian from InterDigital In

InterDigital 21 Dec 29, 2022
An ultra fast tiny model for lane detection, using onnx_parser, TensorRTAPI, torch2trt to accelerate. our model support for int8, dynamic input and profiling. (Nvidia-Alibaba-TensoRT-hackathon2021)

Ultra_Fast_Lane_Detection_TensorRT An ultra fast tiny model for lane detection, using onnx_parser, TensorRTAPI to accelerate. our model support for in

steven.yan 121 Dec 27, 2022
Transfer Learning from Speaker Verification to Multispeaker Text-To-Speech Synthesis (SV2TTS)

This repository is an implementation of Transfer Learning from Speaker Verification to Multispeaker Text-To-Speech Synthesis (SV2TTS) with a vocoder that works in real-time. Feel free to check my the

Corentin Jemine 38.5k Jan 03, 2023
Text editor on python to convert english text to malayalam(Romanization/Transiteration).

Manglish Text Editor This is a simple transiteration (romanization ) program which is used to convert manglish to malayalam (converts njaan to ഞാൻ ).

Merin Rose Tom 1 May 11, 2022
Code Implementation of "Learning Span-Level Interactions for Aspect Sentiment Triplet Extraction".

Span-ASTE: Learning Span-Level Interactions for Aspect Sentiment Triplet Extraction ***** New March 31th, 2022: Scikit-Style API for Easy Usage *****

Chia Yew Ken 111 Dec 23, 2022
Contains links to publicly available datasets for modeling health outcomes using speech and language.

speech-nlp-datasets Contains links to publicly available datasets for modeling various health outcomes using speech and language. Speech-based Corpora

Tuka Alhanai 77 Dec 07, 2022
This is the Alpha of Nutte language, she is not complete yet / Essa é a Alpha da Nutte language, não está completa ainda

nutte-language This is the Alpha of Nutte language, it is not complete yet / Essa é a Alpha da Nutte language, não está completa ainda My language was

catdochrome 2 Dec 18, 2021
A tool helps build a talk preview image by combining the given background image and talk event description

talk-preview-img-builder A tool helps build a talk preview image by combining the given background image and talk event description Installation and U

PyCon Taiwan 4 Aug 20, 2022
Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition

SEW (Squeezed and Efficient Wav2vec) The repo contains the code of the paper "Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speec

ASAPP Research 67 Dec 01, 2022
NLP-based analysis of poor Chinese movie reviews on Douban

douban_embedding 豆瓣中文影评差评分析 1. NLP NLP(Natural Language Processing)是指自然语言处理,他的目的是让计算机可以听懂人话。 下面是我将2万条豆瓣影评训练之后,随意输入一段新影评交给神经网络,最终AI推断出的结果。 "很好,演技不错

3 Apr 15, 2022
:id: A python library for accurate and scalable fuzzy matching, record deduplication and entity-resolution.

Dedupe Python Library dedupe is a python library that uses machine learning to perform fuzzy matching, deduplication and entity resolution quickly on

Dedupe.io 3.6k Jan 02, 2023
Sploitus - Command line search tool for sploitus.com. Think searchsploit, but with more POCs

Sploitus Command line search tool for sploitus.com. Think searchsploit, but with

watchdog2000 5 Mar 07, 2022