Code to use Augmented Shapiro Wilks Stopping, as well as code for the paper "Statistically Signifigant Stopping of Neural Network Training"

Related tags

Text Data & NLPASWS
Overview

This codebase is being actively maintained, please create and issue if you have issues using it

Basics

All data files are included under losses and each folder. The main Augmented Shapiro-Wilk Stopping criterion is implemented in analysis.py, along with several helper functions and wrappers. The other comparison heuristics are also included in analysis.py, along with their wrappers. grapher.py contains all the code for generating the graphs used in the paper, and earlystopping_calculator.py includes code for generating tables and calculating some statistics from the data. hyperparameter_search.py contains all the code used to execute the grid-search on the ASWS method, along with the grid-search for the other heuristics.

Installing

If you would like to try our code, just run pip3 install git+https://github.com/justinkterry/ASWS

Example

If you wanted to try to determine the ASWS stopping point of a model, you can do so using the analysis.py file. If at anypoint during model training you wanted to perform the stop criterion test, you can do

from ASWS.analysis import aswt_stopping

test_acc = [] # for storing model accuracies
for i in training_epochs:

    model.train()
    test_accuracy = model.evaluate(test_set)
    test_acc.append(test_accuracy)
    gamma = 0.5 # fill hyperparameters as desired
    num_data = 20
    slack_prop=0.1
    count = 20

    if len(test_acc) > count:
        aswt_stop_criterion = aswt_stopping(test_acc, gamma, count, num_data, slack_prop=slack_prop)

        if aswt_stop_criterion:
            print("Stop Training")

and if you already have finished training the model and wanted to determine the ASWS stopping point, you would need a CSV with columns Epoch, Training Loss, Training Acc, Test Loss, Test Acc. You could then use the following example

from ASWS.analysis import get_aswt_stopping_point_of_model, read_file

_, _, _, test_acc = read_file("modelaccuracy.csv")
gamma = 0.5 # fill hyperparameters as desired
num_data = 20
slack_prop=0.1
count = 20

stop_epoch, stop_accuracy = get_aswt_stopping_point_of_model(test_acc, gamma=gamma, num_data=num_data, count=count, slack_prop=slack_prop)

pytorch-training

The pytorch-training folder contains the driver file for training each model, along with the model files which contain each network definition. The main.py file can be run out of the box for the models listed in the paper. The model to train is specified via the --model argument. All learning rate schedulers listed in the paper are available (via --schedule step etc.) and the ASWS learning rate scheduler is available via --schedule ASWT . The corresponding ASWS hyperparameters are passed in at the command line (for example --gamma 0.5).

Example

In order to recreate the GoogLeNet ASWT 1 scheduler from the paper, you can use the following command

python3 main.py --model GoogLeNet --schedule ASWT --gamma 0.76 --num_data 19 --slack_prop 0.05 --lr 0.1

Owner
Justin Terry
CS PhD student at UMD. I work in deep reinforcement learning.
Justin Terry
숭실대학교 컴퓨터학부 전공종합설계프로젝트

✨ 시각장애인을 위한 버스도착 알림 장치 ✨ 👀 개요 현대 사회에서 대중교통 위치 정보를 이용하여 사람들이 간단하게 이용할 대중교통의 정보를 얻고 쉽게 대중교통을 이용할 수 있다. 해당 정보는 각종 어플리케이션과 대중교통 이용시설에서 위치 정보를 제공하고 있지만 시각

taegyun 3 Jan 25, 2022
Rhasspy 673 Dec 28, 2022
Basic Utilities for PyTorch Natural Language Processing (NLP)

Basic Utilities for PyTorch Natural Language Processing (NLP) PyTorch-NLP, or torchnlp for short, is a library of basic utilities for PyTorch NLP. tor

Michael Petrochuk 2.1k Jan 01, 2023
Search-Engine - 📖 AI based search engine

Search Engine AI based search engine that was trained on 25000 samples, feel free to train on up to 1.2M sample from kaggle dataset, link below StackS

Vladislav Kruglikov 2 Nov 29, 2022
PyTorch Language Model for 1-Billion Word (LM1B / GBW) Dataset

PyTorch Large-Scale Language Model A Large-Scale PyTorch Language Model trained on the 1-Billion Word (LM1B) / (GBW) dataset Latest Results 39.98 Perp

Ryan Spring 114 Nov 04, 2022
Modeling cumulative cases of Covid-19 in the US during the Covid 19 Delta wave using Bayesian methods.

Introduction The goal of this analysis is to find a model that fits the observed cumulative cases of COVID-19 in the US, starting in Mid-July 2021 and

Alexander Keeney 1 Jan 05, 2022
Paddlespeech Streaming ASR GUI

Paddlespeech-Streaming-ASR-GUI Introduction A paddlespeech Streaming ASR GUI. Us

Niek Zhen 3 Jan 05, 2022
Unsupervised text tokenizer for Neural Network-based text generation.

SentencePiece SentencePiece is an unsupervised text tokenizer and detokenizer mainly for Neural Network-based text generation systems where the vocabu

Google 6.4k Jan 01, 2023
Partially offline multi-language translator built upon Huggingface transformers.

Translate Command-line interface to translation pipelines, powered by Huggingface transformers. This tool can download translation models, and then us

Richard Jarry 8 Oct 25, 2022
List of GSoC organisations with number of times they have been selected.

Welcome to GSoC Organisation Frequency And Details 👋 List of GSoC organisations with number of times they have been selected, techonologies, topics,

Shivam Kumar Jha 41 Oct 01, 2022
Chinese Pre-Trained Language Models (CPM-LM) Version-I

CPM-Generate 为了促进中文自然语言处理研究的发展,本项目提供了 CPM-LM (2.6B) 模型的文本生成代码,可用于文本生成的本地测试,并以此为基础进一步研究零次学习/少次学习等场景。[项目首页] [模型下载] [技术报告] 若您想使用CPM-1进行推理,我们建议使用高效推理工具BMI

Tsinghua AI 1.4k Jan 03, 2023
NLP codes implemented with Pytorch (w/o library such as huggingface)

NLP_scratch NLP codes implemented with Pytorch (w/o library such as huggingface) scripts ├── models: Neural Network models ├── data: codes for dataloa

3 Dec 28, 2021
Automatically search Stack Overflow for the command you want to run

stackshell Automatically search Stack Overflow (and other Stack Exchange sites) for the command you want to ru Use the up and down arrows to change be

circuit10 22 Oct 27, 2021
The official repository of the ISBI 2022 KNIGHT Challenge

KNIGHT The official repository holding the data for the ISBI 2022 KNIGHT Challenge About The KNIGHT Challenge asks teams to develop models to classify

Nicholas Heller 4 Jan 22, 2022
Code Generation using a large neural network called GPT-J

CodeGenX is a Code Generation system powered by Artificial Intelligence! It is delivered to you in the form of a Visual Studio Code Extension and is Free and Open-source!

DeepGenX 389 Dec 31, 2022
Anomaly Detection 이상치 탐지 전처리 모듈

Anomaly Detection 시계열 데이터에 대한 이상치 탐지 1. Kernel Density Estimation을 활용한 이상치 탐지 train_data_path와 test_data_path에 존재하는 시점 정보를 포함하고 있는 csv 형태의 train data와

CLUST-consortium 43 Nov 28, 2022
A2T: Towards Improving Adversarial Training of NLP Models (EMNLP 2021 Findings)

A2T: Towards Improving Adversarial Training of NLP Models This is the source code for the EMNLP 2021 (Findings) paper "Towards Improving Adversarial T

QData 17 Oct 15, 2022
A combination of autoregressors and autoencoders using XLNet for sentiment analysis

A combination of autoregressors and autoencoders using XLNet for sentiment analysis Abstract In this paper sentiment analysis has been performed in or

James Zaridis 2 Nov 20, 2021
StarGAN - Official PyTorch Implementation

StarGAN - Official PyTorch Implementation ***** New: StarGAN v2 is available at https://github.com/clovaai/stargan-v2 ***** This repository provides t

Yunjey Choi 5.1k Dec 30, 2022
A flask application to predict the speech emotion of any .wav file.

This is a speech emotion recognition app. It will allow you to train a modular MLP model with the RAVDESS dataset, and then use that model with a flask application to predict the speech emotion of an

Aryan Vijaywargia 2 Dec 15, 2021