This repository collects together basic linguistic processing data for using dataset dumps from the Common Voice project

Overview

Common Voice Utils

This repository collects together basic linguistic processing data for using dataset dumps from the Common Voice project. It aims to provide a one-stop-shop for utilities and data useful in training ASR and TTS systems.

Tools

  • Phonemiser:
    • A rudimentary grapheme to phoneme (g2p) system based on either:
      • a deterministic longest-match left-to-right replacement of orthographic units; or
      • a weighted finite-state transducer
  • Validator:
    • A validation and normalisation script.
    • It checks a sentence to see if it can be converted and if possible normalises the encoding, removes punctuation and returns it
  • Alphabet:
    • The relevant alphabet of the language, appropriate for use in training ASR
  • Segmenter:
    • A deterministic sentence segmentation algorithm tuned for segmenting paragraphs from Wikipedia
  • Corpora:
    • Contains metadata for different corpora you may be interested in using with Common Voice

Installation

The easiest way is with pip:

$ pip install git+https://github.com/ftyers/commonvoice-utils.git

How to use it

Command line tool

There is also a command line tool, covo /ˈkəʊvəʊ/ which aims to expose much of the functionality through the command line. Some examples on the next lines:

Process a Wikipedia dump

Use a Wikipedia dump to get text for a language mode in the right format:

$ covo dump mtwiki-latest-pages-articles.xml.bz2 | covo segment mt | covo norm mt
x'inhi l-wikipedija
il-wikipedija hi mmexxija mill-fondazzjoni wikimedia fondazzjoni mingħajr fini ta' lukru li tospita proġetti oħra b'kontenut ħieles u multilingwi
il-malti huwa l-ilsien nazzjonali tar-repubblika ta' malta
huwa l-ilsien uffiċjali flimkien mal-ingliż kif ukoll wieħed mill-ilsna uffiċjali tal-unjoni ewropea

Query the OPUS corpus collection

Get a list of URLs for a particular language from the OPUS corpus collection:

$ covo opus mt | sort -gr
23859 documents,69.4M tokens	https://object.pouta.csc.fi/OPUS-DGT/v2019/mono/mt.txt.gz
8665 documents,25.8M tokens	https://object.pouta.csc.fi/OPUS-JRC-Acquis/v3.0/mono/mt.txt.gz
5388 documents,8.9M tokens	https://object.pouta.csc.fi/OPUS-JW300/v1b/mono/mt.txt.gz
...

Convert grapheme input to phonemes

Get the grapheme to phoneme output for some arbitrary input:

$ echo "euskal herrian euskaraz" | covo phon eu
eus̺kal erian eus̺kaɾas̻

$ echo "قايتا نىشان بەلگىلەش ئورنى ئۇيغۇرچە ۋىكىپىدىيە" | covo phon ug
qɑjtɑ nɪʃɑn bɛlɡɪlɛʃ ornɪ ujʁurtʃɛ vɪkɪpɪdɪjɛ

Export data for use in Coqui STT

Designed for use with Coqui STT, converts to 16kHz mono-channel PCM .wav files and runs the transcripts through the validation step. In addition outputs .csv files for each of the input .tsv files.

$ covo export myv cv-corpus-8.0-2022-01-19/myv/
Loading TSV file:  cv-corpus-8.0-2022-01-19/myv/test.tsv
  Importing mp3 files...
  Imported 292 samples.
  Skipped 2 samples that were longer than 10 seconds.
  Final amount of imported audio: 0:27:03 from 0:27:23.
  Saving new Coqui STT-formatted CSV file to:  cv-corpus-8.0-2022-01-19/myv/clips/test.csv
  Writing CSV file for train.py as:  cv-corpus-8.0-2022-01-19/myv/clips/test.csv

Python module

The code can also be used as a Python module, here are some examples:

Alphabet

Returns an alphabet appropriate for end-to-end speech recognition.

>>> from cvutils import Alphabet
>>> a = Alphabet('cv')
>>> a.get_alphabet()
' -абвгдежзийклмнопрстуфхцчшщыэюяёҫӑӗӳ'

Corpora

Some miscellaneous tools for working with corpora:

>>> from cvutils import Corpora
>>> c = Corpora('kpv')
>>> c.dump_url()
'https://dumps.wikimedia.org/kvwiki/latest/kvwiki-latest-pages-articles.xml.bz2'
>>> c.target_segments()
[]
>>> c = Corpora('cv')
>>> c.target_segments()
['нуль', 'пӗрре', 'иккӗ', 'виҫҫӗ', 'тӑваттӑ', 'пиллӗк', 'улттӑ', 'ҫиччӗ', 'саккӑр', 'тӑххӑр', 'ҫапла', 'ҫук']
>>> c.dump_url()
'https://dumps.wikimedia.org/cvwiki/latest/cvwiki-latest-pages-articles.xml.bz2'

Grapheme to phoneme

For a given token, return an approximate broad phonemised version of it.

>>> from cvutils import Phonemiser
>>> p = Phonemiser('ab')
>>> p.phonemise('гӏапынхъамыз')
'ʕapənqaməz'

>>> p = Phonemiser('br')
>>> p.phonemise("implijout")
'impliʒut'

Validator

For a given input sentence/utterance, the validator returns either a validated and normalised version of the string according to the validation rules, or None if the string cannot be validated.

>>> from cvutils import Validator
>>> v = Validator('ab')
>>> v.validate('Аллаҳ хаҵеи-ԥҳәыси иеилыхны, аҭыԥҳацәа роума иалихыз?')
'аллаҳ хаҵеи-ԥҳәыси иеилыхны аҭыԥҳацәа роума иалихыз'

>>> v = Validator('br')
>>> v.validate('Ha cʼhoant hocʼh eus da gendercʼhel da implijout ar servijer-mañ ?')
"ha c'hoant hoc'h eus da genderc'hel da implijout ar servijer-mañ"

Sentence segmentation

Mostly designed for use with Wikipedia, takes a paragraph and returns a list of the sentences found within it.

>> for sent in s.segment(para): ... print(sent) ... Peurliesañ avat e kemm ar vogalennoù e c'hengerioù evit dont da vezañ heñvel ouzh ar vogalennoù en nominativ (d.l.e. ar stumm-meneg), da skouer e hungareg: Aour, tungsten, zink, uraniom, h.a., a vez kavet e kondon Bouryatia. A-bouez-bras evit armerzh ar vro eo al labour-douar ivez pa vez gounezet gwinizh ha legumaj dreist-holl. A-hend-all e vez gounezet arc'hant dre chaseal ha pesketa.">
>>> from cvutils import Segmenter 
>>> s = Segmenter('br')
>>> para = "Peurliesañ avat e kemm ar vogalennoù e c'hengerioù evit dont da vezañ heñvel ouzh ar vogalennoù en nominativ (d.l.e. ar stumm-meneg), da skouer e hungareg: Aour, tungsten, zink, uraniom, h.a., a vez kavet e kondon Bouryatia. A-bouez-bras evit armerzh ar vro eo al labour-douar ivez pa vez gounezet gwinizh ha legumaj dreist-holl. A-hend-all e vez gounezet arc'hant dre chaseal ha pesketa."
>>> for sent in s.segment(para):
...     print(sent)
... 
Peurliesañ avat e kemm ar vogalennoù e c'hengerioù evit dont da vezañ heñvel ouzh ar vogalennoù en nominativ (d.l.e. ar stumm-meneg), da skouer e hungareg: Aour, tungsten, zink, uraniom, h.a., a vez kavet e kondon Bouryatia.
A-bouez-bras evit armerzh ar vro eo al labour-douar ivez pa vez gounezet gwinizh ha legumaj dreist-holl.
A-hend-all e vez gounezet arc'hant dre chaseal ha pesketa.

Language support

Language Autonym Code (CV) (WP) Phon Valid Alphabet Segment
Abkhaz Аԥсуа abk ab
Amharic አማርኛ amh am
Arabic اَلْعَرَبِيَّةُ ara ar ar
Assamese অসমীয়া asm as as
Azeri Azərbaycanca aze az az
Bashkort Башҡортса bak ba ba
Basaa Basaa bas bas
Belarusian Беларуская мова bel be be
Bengali বাংলা ben bn bn
Breton Brezhoneg bre br br
Bulgarian Български bul bg bg
Catalan Català cat ca ca
Czech Čeština ces cs cs
Chukchi Ԓыгъоравэтԓьэн ckt
Chuvash Чӑвашла chv cv cv
Hakha Chin Hakha Lai cnh cnh
Welsh Cymraeg cym cy cy
Dhivehi ދިވެހި div dv dv
Greek Ελληνικά ell el el
Danish Dansk dan da da
German Deutsch deu de de
English English eng en en
Esperanto Esperanto epo eo eo
Ewe Eʋegbe ewe ee ee
Spanish Español spa es es
Erzya Эрзянь кель myv myv myv
Estonian Eesti est et et
Basque Euskara eus eu eu
Persian فارسی pes fa fa
Finnish Suomi fin fi fi
French Français fra fr fr
Frisian Frysk fry fy-NL fy
Igbo Ásụ̀sụ́ Ìgbò ibo ig ig
Irish Gaeilge gle ga-IE ga
Galician Galego glg gl gl
Guaraní Avañeʼẽ gug gn gn
Hindi हिन्दी hin hi hi
Hausa Harshen Hausa hau ha ha
Upper Sorbian Hornjoserbšćina hsb hsb hsb
Hungarian Magyar nyelv hun hu hu
Armenian Հայերեն hye hy-AM hy
Interlingua Interlingua ina ia ia
Indonesian Bahasa indonesia ind id id
Icelandic Íslenska isl is is
Italian Italiano ita it it
Japanese 日本語 jpn ja ja
Georgian ქართული ენა kat ka ka
Kabyle Taqbaylit kab kab kab
Kazakh Қазақша kaz kk kk
Kikuyu Gĩgĩkũyũ kik ki ki
Kyrgyz Кыргызча kir ky ky
Kurmanji Kurdish Kurmancî kmr ku ku
Sorani Kurdish سۆرانی ckb ckb ckb
Komi-Zyrian Коми кыв kpv kv kv
Luganda Luganda lug lg lg
Lithuanian Lietuvių kalba lit lt lt
Lingala Lingála lin ln ln
Latvian Latviešu valoda lvs lv lv
Luo Dholuo luo luo
Macedonian Македонски mkd mk mk
Malayalam മലയാളം mal ml ml
Marathi मराठी mar mr mr
Mongolian Монгол хэл khk mn mn
Moksha Мокшень кяль mdf mdf mdf
Maltese Malti mlt mt mt
Dutch Nederlands nld nl nl
Chewa Chichewa nya ny ny
Norwegian Nynorsk Nynorsk nno nn-NO nn
Oriya ଓଡ଼ିଆ ori or or
Punjabi ਪੰਜਾਬੀ pan pa-IN pa
Polish Polski pol pl pl
Portuguese Português por pt pt
Kʼicheʼ Kʼicheʼ quc
Romansch (Sursilvan) Romontsch roh rm-sursilv rm
Romansch (Vallader) Rumantsch roh rm-vallader rm
Romanian Românește ron ro ro
Russian Русский rus ru ru
Kinyarwanda Kinyarwanda kin rw rw
Sakha Саха тыла sah sah sah
Santali ᱥᱟᱱᱛᱟᱲᱤ sat sat sat
Serbian Srpski srp sr sr
Slovak Slovenčina slk sk sk
Slovenian Slovenščina slv sl sl
Swahili Kiswahili swa sw
Swedish Svenska swe sv-SE sv
Tamil தமிழ் tam ta ta
Thai ภาษาไทย tha th th
Turkish Türkçe tur tr tr
Tatar Татар теле tat tt tt
Twi Twi tw tw tw
Ukrainian Українська мова ukr uk uk
Urdu اُردُو urd ur ur
Uyghur ئۇيغۇر تىلى uig ug ug
Uzbek Oʻzbekcha uzb uz uz
Vietnamese Tiếng Việt vie vi vi
Votic Vaďďa tšeeli vot vot
Wolof Wolof wol wo
Yoruba Èdè Yorùbá yor yo
Chinese (China) 中文 cmn zh-CN zh
Chinese (Hong Kong) 中文 cmn zh-HK zh
Chinese (Taiwan) 中文 cmn zh-TW zh

Frequently asked questions

Why not use [insert better system] for [insert task here] ?

There are potentially a lot of better language-specific systems for doing these tasks, but each one has a slightly different API, so if you want to support all the Common Voice languages or even a reasonable subset you have to learn and use the same number of language-specific APIs.

The idea of these utilities is to provide adequate implementations of things are are likely to be useful when working with all the languages in Common Voice. If you are working on a single language or have a specific setup or are using more data than just Common Voice, maybe this isn't for you. But if you want to just train coqui-ai/STT on Common Voice, then maybe it is :)

Why not just make the alphabet from the transcripts ?

Depending on the language in Common Voice, the transcripts can contain a lot of random punctuation, numerals, and incorrect character encodings (for example Latin ç instead of Cyrillic ҫ for Chuvash). These may look the same but will result in bigger sparsity for the model. Additionally some languages may have several encodings of the same character, such as the apostrophe. These will ideally be normalised before training.

Also, if you are working with a single language you probably have time to look through all the transcripts for the alphabetic symbols, but if you want to work with a large number of Common Voice languages at the same time it's useful to have them all in one place.

Hey aren't some of those languages not in Common Voice ?

That's right, some of the languages are either not in Common Voice (yet!) or are in Common Voice but have not been released yet. If I've been working with them I've included them anyway.

See also

  • epitran: Great grapheme to phoneme system that supports a wide range of languages.

Licence

All the code, aside from that explicitly licensed under a different licence, is licensed under the AGPL v 3.0.

Acknowledgements

Owner
Francis Tyers
Francis Tyers
Code for Emergent Translation in Multi-Agent Communication

Emergent Translation in Multi-Agent Communication PyTorch implementation of the models described in the paper Emergent Translation in Multi-Agent Comm

Facebook Research 75 Jul 15, 2022
ACL22 paper: Imputing Out-of-Vocabulary Embeddings with LOVE Makes Language Models Robust with Little Cost

Imputing Out-of-Vocabulary Embeddings with LOVE Makes Language Models Robust with Little Cost LOVE is accpeted by ACL22 main conference as a long pape

Lihu Chen 32 Jan 03, 2023
Partially offline multi-language translator built upon Huggingface transformers.

Translate Command-line interface to translation pipelines, powered by Huggingface transformers. This tool can download translation models, and then us

Richard Jarry 8 Oct 25, 2022
A python wrapper around the ZPar parser for English.

NOTE This project is no longer under active development since there are now really nice pure Python parsers such as Stanza and Spacy. The repository w

ETS 49 Sep 12, 2022
Main repository for the chatbot Bobotinho.

Bobotinho Bot Main repository for the chatbot Bobotinho. ℹ️ Introduction Twitch chatbot with entertainment commands. ‎ 💻 Technologies Concurrent code

Bobotinho 14 Nov 29, 2022
Build Text Rerankers with Deep Language Models

Reranker is a lightweight, effective and efficient package for training and deploying deep languge model reranker in information retrieval (IR), question answering (QA) and many other natural languag

Luyu Gao 140 Dec 06, 2022
🏖 Easy training and deployment of seq2seq models.

Headliner Headliner is a sequence modeling library that eases the training and in particular, the deployment of custom sequence models for both resear

Axel Springer Ideas Engineering GmbH 231 Nov 18, 2022
Implementation of TF-IDF algorithm to find documents similarity with cosine similarity

NLP learning Trying to learn NLP to use in my projects! Table of Contents About The Project Built With Getting Started Requirements Run Usage License

Faraz Farangizadeh 3 Aug 25, 2022
2021 2학기 데이터크롤링 기말프로젝트

공지 주제 웹 크롤링을 이용한 취업 공고 스케줄러 스케줄 주제 정하기 코딩하기 핵심 코드 설명 + 피피티 구조 구상 // 12/4 토 피피티 + 스크립트(대본) 제작 + 녹화 // ~ 12/10 ~ 12/11 금~토 영상 편집 // ~12/11 토 웹크롤러 사람인_평균

Choi Eun Jeong 2 Aug 16, 2022
PRAnCER is a web platform that enables the rapid annotation of medical terms within clinical notes.

PRAnCER (Platform enabling Rapid Annotation for Clinical Entity Recognition) is a web platform that enables the rapid annotation of medical terms within clinical notes. A user can highlight spans of

Sontag Lab 39 Nov 14, 2022
AI and Machine Learning workflows on Anthos Bare Metal.

Hybrid and Sovereign AI on Anthos Bare Metal Table of Contents Overview Terraform as IaC Substrate ABM Cluster on GCE using Terraform TensorFlow ResNe

Google Cloud Platform 8 Nov 26, 2022
lightweight, fast and robust columnar dataframe for data analytics with online update

streamdf Streamdf is a lightweight data frame library built on top of the dictionary of numpy array, developed for Kaggle's time-series code competiti

23 May 19, 2022
Residual2Vec: Debiasing graph embedding using random graphs

Residual2Vec: Debiasing graph embedding using random graphs This repository contains the code for S. Kojaku, J. Yoon, I. Constantino, and Y.-Y. Ahn, R

SADAMORI KOJAKU 5 Oct 12, 2022
Code for text augmentation method leveraging large-scale language models

HyperMix Code for our paper GPT3Mix and conducting classification experiments using GPT-3 prompt-based data augmentation. Getting Started Installing P

NAVER AI 47 Dec 20, 2022
基于“Seq2Seq+前缀树”的知识图谱问答

KgCLUE-bert4keras 基于“Seq2Seq+前缀树”的知识图谱问答 简介 博客:https://kexue.fm/archives/8802 环境 软件:bert4keras=0.10.8 硬件:目前的结果是用一张Titan RTX(24G)跑出来的。 运行 第一次运行的时候,会给知

苏剑林(Jianlin Su) 65 Dec 12, 2022
Use the state-of-the-art m2m100 to translate large data on CPU/GPU/TPU. Super Easy!

Easy-Translate is a script for translating large text files in your machine using the M2M100 models from Facebook/Meta AI. We also privide a script fo

Iker García-Ferrero 41 Dec 15, 2022
text to speech toolkit. 好用的中文语音合成工具箱,包含语音编码器、语音合成器、声码器和可视化模块。

ttskit Text To Speech Toolkit: 语音合成工具箱。 安装 pip install -U ttskit 注意 可能需另外安装的依赖包:torch,版本要求torch=1.6.0,=1.7.1,根据自己的实际环境安装合适cuda或cpu版本的torch。 ttskit的

KDD 483 Jan 04, 2023
Code associated with the "Data Augmentation using Pre-trained Transformer Models" paper

Data Augmentation using Pre-trained Transformer Models Code associated with the Data Augmentation using Pre-trained Transformer Models paper Code cont

44 Dec 31, 2022
Python library to make development of portfolio analysis faster and easier

Trafalgar Python library to make development of portfolio analysis faster and easier Installation 🔥 For the moment, Trafalgar is still in beta develo

Santosh Passoubady 641 Jan 01, 2023
An attempt to map the areas with active conflict in Ukraine using open source twitter data.

Live Action Map (LAM) An attempt to use open source data on Twitter to map areas with active conflict. Right now it is used for the Ukraine-Russia con

Kinshuk Dua 171 Nov 21, 2022