An attempt to map the areas with active conflict in Ukraine using open source twitter data.

Overview

Contributors Forks Stargazers Issues LinkedIn


Logo

Live Action Map (LAM)

An attempt to use open source data on Twitter to map areas with active conflict. Right now it is used for the Ukraine-Russia conflict, but in the future I hope it can be used for all sorts of dangerous situations.
Report Bug · Add Feature · Website Live! · Join Discord!

Table of Contents
  1. About The Project
  2. Getting Started
  3. Usage
  4. Roadmap
  5. Contributing
  6. License

About The Project

There are many twitter accounts posting live tweets about locations with conflicts. However, it is difficult to keep track of the locations especially with multiple different sources pointing out different location every few minutes. To make sure people can stay safe and take care of themselves, I have aggregated all the tweets into a single map that is easily accessible.

This project is a work in progress. I am working on adding more features and improving the map.

Website Link Image

How it works:

  • Tweets are sourced using keywords, hashtags and prepositions, such as the phrase "shooting... near ... location".
  • Tweets can also be sourced from known twitter accounts by passing their usernames.
  • Tweets are parsed with NLP and the location is extracted from the tweet, this however is not perfect so we need to filter locations later on.
  • Some tweets might talk about other countries reactions like "The US.." or "Russia.." or "Moscow..", in that case we remove all the locations that are not in Ukraine.
  • Some tweets might talk about multiple locations like "Shooting near the location and the location". In that case both locations are added to the map. Multiple markers can be added to the same location.
  • Finally we add markers for each tweet.
  • Markers will cluster together when you zoom out.
  • A single marker looks like a red pin on a map.
  • A cluster appears as a circle with a number inside it, the color shifts from green to orange to red depending on the number of markers in the cluster.
  • We are not taking data directly because that may be vulnerable to trolling and spamming.
  • We are using the Twitter v2 API to get the tweets, however it does not support parsing location directly from tweets.

(back to top)

Getting Started

To get a local copy up and running follow these simple example steps.

Prerequisites

  • Python
  • tweepy
  • spaCy
  • folium
  • geopy
  • tqdm
  • geography3 (optional, needed for experimental feature)

Installation

Python

  1. Get a free twitter Bearer Token from developer.twitter.com. Remember to create a new app and get the bearer token.
  2. Clone the repo
    git clone https://github.com/kinshukdua/LiveActionMap.git
  3. Install all prerequisites
    pip install -r requirements.txt
  4. Download en_core_web, for more info see --> explosion/spaCy#4577
     python3 -m spacy download en_core_web_sm
  5. Create a .env file based on the .env.example
    cp .env.example .env
  6. Set the Twitter bearer token to your own in the .env file created in the previous step.

Docker

  1. Get a Twitter Bearer Token
  2. Download the docker-compose.yaml-file
    wget https://raw.githubusercontent.com/kinshukdua/LiveActionMap/main/docker/docker-compose.yaml
  3. Create a .env file based on the .env.example
    wget https://raw.githubusercontent.com/kinshukdua/LiveActionMap/main/.env.example -O .env 
  4. Start the stack
    docker-compose up -d
    

(back to top)

Usage

Simply edit hashtags, prepositions and keywords and run scrape.py.

python scrape.py

(back to top)

Roadmap

  • Add tweet scraping
  • Add map
  • Add map clustering
  • Create a server to host the generated map
  • Add better filtering
  • Add tweet link on map
  • Use NLP to indicate danger level
  • Add misinformation prevention algorithm
  • Multi-language Support
    • Ukranian
    • Russian

See the open issues for a full list of proposed features (and known issues).

(back to top)

Contributing

Contributions are what make the open source community such an amazing place to learn, inspire, and create. Any contributions you make are greatly appreciated.

If you have a suggestion that would make this better, please fork the repo and create a pull request. You can also simply open an issue with the tag "enhancement". Don't forget to give the project a star! Thanks again!

  1. Fork the Project
  2. Create your Feature Branch (git checkout -b feature/AmazingFeature)
  3. Commit your Changes (git commit -m 'Add some AmazingFeature')
  4. Push to the Branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

(back to top)

License

Distributed under the MIT License. See LICENSE.txt for more information.

(back to top)

AutoGluon: AutoML for Text, Image, and Tabular Data

AutoML for Text, Image, and Tabular Data AutoGluon automates machine learning tasks enabling you to easily achieve strong predictive performance in yo

Amazon Web Services - Labs 5.2k Dec 29, 2022
Journey is a NLP-Powered Developer assistant

Journey Journey is a NLP-Powered Developer assistant Using on the powerful Natural Language Processing library Mindmeld, this projects aims to assist

Christian Eilers 21 Dec 11, 2022
Coreference resolution for English, German and Polish, optimised for limited training data and easily extensible for further languages

Coreferee Author: Richard Paul Hudson, msg systems ag 1. Introduction 1.1 The basic idea 1.2 Getting started 1.2.1 English 1.2.2 German 1.2.3 Polish 1

msg systems ag 169 Dec 21, 2022
PatrickStar enables Larger, Faster, Greener Pretrained Models for NLP. Democratize AI for everyone.

PatrickStar enables Larger, Faster, Greener Pretrained Models for NLP. Democratize AI for everyone.

Tencent 633 Dec 28, 2022
Différents programmes créant une interface graphique a l'aide de Tkinter pour simplifier la vie des étudiants.

GP211-Grand-Projet Ce repertoire contient tout les programmes nécessaires au bon fonctionnement de notre projet-logiciel. Cette interface graphique es

1 Dec 21, 2021
Finally decent dictionaries based on Wiktionary for your beloved eBook reader.

eBook Reader Dictionaries Finally, decent dictionaries based on Wiktionary for your beloved eBook reader. Dictionaries Catalan 🚧 Ελληνικά (help welco

Mickaël Schoentgen 163 Dec 31, 2022
Open solution to the Toxic Comment Classification Challenge

Starter code: Kaggle Toxic Comment Classification Challenge More competitions 🎇 Check collection of public projects 🎁 , where you can find multiple

minerva.ml 153 Jun 22, 2022
Pipeline for fast building text classification TF-IDF + LogReg baselines.

Text Classification Baseline Pipeline for fast building text classification TF-IDF + LogReg baselines. Usage Instead of writing custom code for specif

Dani El-Ayyass 57 Dec 07, 2022
Pretrain CPM - 大规模预训练语言模型的预训练代码

CPM-Pretrain 版本更新记录 为了促进中文自然语言处理研究的发展,本项目提供了大规模预训练语言模型的预训练代码。项目主要基于DeepSpeed、Megatron实现,可以支持数据并行、模型加速、流水并行的代码。 安装 1、首先安装pytorch等基础依赖,再安装APEX以支持fp16。 p

Tsinghua AI 37 Dec 06, 2022
Large-scale Self-supervised Pre-training Across Tasks, Languages, and Modalities

Hiring We are hiring at all levels (including FTE researchers and interns)! If you are interested in working with us on NLP and large-scale pre-traine

Microsoft 7.8k Jan 09, 2023
Coreference resolution for English, French, German and Polish, optimised for limited training data and easily extensible for further languages

Coreferee Author: Richard Paul Hudson, Explosion AI 1. Introduction 1.1 The basic idea 1.2 Getting started 1.2.1 English 1.2.2 French 1.2.3 German 1.2

Explosion 70 Dec 12, 2022
RecipeReduce: Simplified Recipe Processing for Lazy Programmers

RecipeReduce This repo will help you figure out the amount of ingredients to buy for a certain number of meals with selected recipes. RecipeReduce Get

Qibin Chen 9 Apr 22, 2022
Tools, wrappers, etc... for data science with a concentration on text processing

Rosetta Tools for data science with a focus on text processing. Focuses on "medium data", i.e. data too big to fit into memory but too small to necess

207 Nov 22, 2022
The code for two papers: Feedback Transformer and Expire-Span.

transformer-sequential This repo contains the code for two papers: Feedback Transformer Expire-Span The training code is structured for long sequentia

Meta Research 125 Dec 25, 2022
Google and Stanford University released a new pre-trained model called ELECTRA

Google and Stanford University released a new pre-trained model called ELECTRA, which has a much compact model size and relatively competitive performance compared to BERT and its variants. For furth

Yiming Cui 1.2k Dec 30, 2022
An assignment from my grad-level data mining course demonstrating some experience with NLP/neural networks/Pytorch

NLP-Pytorch-Assignment An assignment from my grad-level data mining course (before I started personal projects) demonstrating some experience with NLP

David Thorne 0 Feb 06, 2022
StarGAN - Official PyTorch Implementation

StarGAN - Official PyTorch Implementation ***** New: StarGAN v2 is available at https://github.com/clovaai/stargan-v2 ***** This repository provides t

Yunjey Choi 5.1k Dec 30, 2022
Code for paper Multitask-Finetuning of Zero-shot Vision-Language Models

Code for paper Multitask-Finetuning of Zero-shot Vision-Language Models

Zhenhailong Wang 2 Jul 15, 2022
Universal End2End Training Platform, including pre-training, classification tasks, machine translation, and etc.

背景 安装教程 快速上手 (一)预训练模型 (二)机器翻译 (三)文本分类 TenTrans 进阶 1. 多语言机器翻译 2. 跨语言预训练 背景 TrenTrans是一个统一的端到端的多语言多任务预训练平台,支持多种预训练方式,以及序列生成和自然语言理解任务。 安装教程 git clone git

Tencent Minority-Mandarin Translation Team 42 Dec 20, 2022
ALBERT: A Lite BERT for Self-supervised Learning of Language Representations

ALBERT ***************New March 28, 2020 *************** Add a colab tutorial to run fine-tuning for GLUE datasets. ***************New January 7, 2020

Google Research 3k Dec 26, 2022