An attempt to map the areas with active conflict in Ukraine using open source twitter data.

Overview

Contributors Forks Stargazers Issues LinkedIn


Logo

Live Action Map (LAM)

An attempt to use open source data on Twitter to map areas with active conflict. Right now it is used for the Ukraine-Russia conflict, but in the future I hope it can be used for all sorts of dangerous situations.
Report Bug ยท Add Feature ยท Website Live! ยท Join Discord!

Table of Contents
  1. About The Project
  2. Getting Started
  3. Usage
  4. Roadmap
  5. Contributing
  6. License

About The Project

There are many twitter accounts posting live tweets about locations with conflicts. However, it is difficult to keep track of the locations especially with multiple different sources pointing out different location every few minutes. To make sure people can stay safe and take care of themselves, I have aggregated all the tweets into a single map that is easily accessible.

This project is a work in progress. I am working on adding more features and improving the map.

Website Link Image

How it works:

  • Tweets are sourced using keywords, hashtags and prepositions, such as the phrase "shooting... near ... location".
  • Tweets can also be sourced from known twitter accounts by passing their usernames.
  • Tweets are parsed with NLP and the location is extracted from the tweet, this however is not perfect so we need to filter locations later on.
  • Some tweets might talk about other countries reactions like "The US.." or "Russia.." or "Moscow..", in that case we remove all the locations that are not in Ukraine.
  • Some tweets might talk about multiple locations like "Shooting near the location and the location". In that case both locations are added to the map. Multiple markers can be added to the same location.
  • Finally we add markers for each tweet.
  • Markers will cluster together when you zoom out.
  • A single marker looks like a red pin on a map.
  • A cluster appears as a circle with a number inside it, the color shifts from green to orange to red depending on the number of markers in the cluster.
  • We are not taking data directly because that may be vulnerable to trolling and spamming.
  • We are using the Twitter v2 API to get the tweets, however it does not support parsing location directly from tweets.

(back to top)

Getting Started

To get a local copy up and running follow these simple example steps.

Prerequisites

  • Python
  • tweepy
  • spaCy
  • folium
  • geopy
  • tqdm
  • geography3 (optional, needed for experimental feature)

Installation

Python

  1. Get a free twitter Bearer Token from developer.twitter.com. Remember to create a new app and get the bearer token.
  2. Clone the repo
    git clone https://github.com/kinshukdua/LiveActionMap.git
  3. Install all prerequisites
    pip install -r requirements.txt
  4. Download en_core_web, for more info see --> explosion/spaCy#4577
     python3 -m spacy download en_core_web_sm
  5. Create a .env file based on the .env.example
    cp .env.example .env
  6. Set the Twitter bearer token to your own in the .env file created in the previous step.

Docker

  1. Get a Twitter Bearer Token
  2. Download the docker-compose.yaml-file
    wget https://raw.githubusercontent.com/kinshukdua/LiveActionMap/main/docker/docker-compose.yaml
  3. Create a .env file based on the .env.example
    wget https://raw.githubusercontent.com/kinshukdua/LiveActionMap/main/.env.example -O .env 
  4. Start the stack
    docker-compose up -d
    

(back to top)

Usage

Simply edit hashtags, prepositions and keywords and run scrape.py.

python scrape.py

(back to top)

Roadmap

  • Add tweet scraping
  • Add map
  • Add map clustering
  • Create a server to host the generated map
  • Add better filtering
  • Add tweet link on map
  • Use NLP to indicate danger level
  • Add misinformation prevention algorithm
  • Multi-language Support
    • Ukranian
    • Russian

See the open issues for a full list of proposed features (and known issues).

(back to top)

Contributing

Contributions are what make the open source community such an amazing place to learn, inspire, and create. Any contributions you make are greatly appreciated.

If you have a suggestion that would make this better, please fork the repo and create a pull request. You can also simply open an issue with the tag "enhancement". Don't forget to give the project a star! Thanks again!

  1. Fork the Project
  2. Create your Feature Branch (git checkout -b feature/AmazingFeature)
  3. Commit your Changes (git commit -m 'Add some AmazingFeature')
  4. Push to the Branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

(back to top)

License

Distributed under the MIT License. See LICENSE.txt for more information.

(back to top)

This repository is home to the Optimus data transformation plugins for various data processing needs.

Transformers Optimus's transformation plugins are implementations of Task and Hook interfaces that allows execution of arbitrary jobs in optimus. To i

Open Data Platform 37 Dec 14, 2022
Rootski - Full codebase for rootski.io (without the data)

๐Ÿ“ฃ Welcome to the Rootski codebase! This is the codebase for the application run

Eric 20 Nov 18, 2022
Syntax-aware Multi-spans Generation for Reading Comprehension (TASLP 2022)

SyntaxGen Syntax-aware Multi-spans Generation for Reading Comprehension (TASLP 2022) In this repo, we upload all the scripts for this work. Due to siz

Zhuosheng Zhang 3 Jun 13, 2022
PyTorch impelementations of BERT-based Spelling Error Correction Models.

PyTorch impelementations of BERT-based Spelling Error Correction Models

Heng Cai 209 Dec 30, 2022
News-Articles-and-Essays - NLP (Topic Modeling and Clustering)

NLP T5 Project proposal Topic Modeling and Clustering of News-Articles-and-Essays Students: Nasser Alshehri Abdullah Bushnag Abdulrhman Alqurashi OVER

2 Jan 18, 2022
NLP codes implemented with Pytorch (w/o library such as huggingface)

NLP_scratch NLP codes implemented with Pytorch (w/o library such as huggingface) scripts โ”œโ”€โ”€ models: Neural Network models โ”œโ”€โ”€ data: codes for dataloa

3 Dec 28, 2021
Code for the paper "VisualBERT: A Simple and Performant Baseline for Vision and Language"

This repository contains code for the following two papers: VisualBERT: A Simple and Performant Baseline for Vision and Language (arxiv) with a short

Natural Language Processing @UCLA 464 Jan 04, 2023
A Paper List for Speech Translation

Keyword: Speech Translation, Spoken Language Processing, Natural Language Processing

138 Dec 24, 2022
Code for producing Japanese GPT-2 provided by rinna Co., Ltd.

japanese-gpt2 This repository provides the code for training Japanese GPT-2 models. This code has been used for producing japanese-gpt2-medium release

rinna Co.,Ltd. 491 Jan 07, 2023
๐Ÿ– Easy training and deployment of seq2seq models.

Headliner Headliner is a sequence modeling library that eases the training and in particular, the deployment of custom sequence models for both resear

Axel Springer Ideas Engineering GmbH 231 Nov 18, 2022
SentimentArcs: a large ensemble of dozens of sentiment analysis models to analyze emotion in text over time

SentimentArcs - Emotion in Text An end-to-end pipeline based on Jupyter notebooks to detect, extract, process and anlayze emotion over time in text. E

jon_chun 14 Dec 19, 2022
The code for two papers: Feedback Transformer and Expire-Span.

transformer-sequential This repo contains the code for two papers: Feedback Transformer Expire-Span The training code is structured for long sequentia

Meta Research 125 Dec 25, 2022
Code to reprudece NeurIPS paper: Accelerated Sparse Neural Training: A Provable and Efficient Method to Find N:M Transposable Masks

Accelerated Sparse Neural Training: A Provable and Efficient Method to FindN:M Transposable Masks Recently, researchers proposed pruning deep neural n

itay hubara 4 Feb 23, 2022
Text Classification Using LSTM

Text classification is the task of assigning a set of predefined categories to free text. Text classifiers can be used to organize, structure, and categorize pretty much anything. For example, new ar

KrishArul26 3 Jan 03, 2023
The proliferation of disinformation across social media has led the application of deep learning techniques to detect fake news.

Fake News Detection Overview The proliferation of disinformation across social media has led the application of deep learning techniques to detect fak

Kushal Shingote 1 Feb 08, 2022
Indobenchmark are collections of Natural Language Understanding (IndoNLU) and Natural Language Generation (IndoNLG)

Indobenchmark Toolkit Indobenchmark are collections of Natural Language Understanding (IndoNLU) and Natural Language Generation (IndoNLG) resources fo

Samuel Cahyawijaya 11 Aug 26, 2022
๐Ÿค• spelling exceptions builder for lazy people

๐Ÿค• spelling exceptions builder for lazy people

Vlad Bokov 3 May 12, 2022
A Japanese tokenizer based on recurrent neural networks

Nagisa is a python module for Japanese word segmentation/POS-tagging. It is designed to be a simple and easy-to-use tool. This tool has the following

325 Jan 05, 2023
Fine-tune GPT-3 with a Google Chat conversation history

Google Chat GPT-3 This repo will help you fine-tune GPT-3 with a Google Chat conversation history. The trained model will be able to converse as one o

Nate Baer 7 Dec 10, 2022
A library for Multilingual Unsupervised or Supervised word Embeddings

MUSE: Multilingual Unsupervised and Supervised Embeddings MUSE is a Python library for multilingual word embeddings, whose goal is to provide the comm

Facebook Research 3k Jan 06, 2023