An attempt to map the areas with active conflict in Ukraine using open source twitter data.

Overview

Contributors Forks Stargazers Issues LinkedIn


Logo

Live Action Map (LAM)

An attempt to use open source data on Twitter to map areas with active conflict. Right now it is used for the Ukraine-Russia conflict, but in the future I hope it can be used for all sorts of dangerous situations.
Report Bug · Add Feature · Website Live! · Join Discord!

Table of Contents
  1. About The Project
  2. Getting Started
  3. Usage
  4. Roadmap
  5. Contributing
  6. License

About The Project

There are many twitter accounts posting live tweets about locations with conflicts. However, it is difficult to keep track of the locations especially with multiple different sources pointing out different location every few minutes. To make sure people can stay safe and take care of themselves, I have aggregated all the tweets into a single map that is easily accessible.

This project is a work in progress. I am working on adding more features and improving the map.

Website Link Image

How it works:

  • Tweets are sourced using keywords, hashtags and prepositions, such as the phrase "shooting... near ... location".
  • Tweets can also be sourced from known twitter accounts by passing their usernames.
  • Tweets are parsed with NLP and the location is extracted from the tweet, this however is not perfect so we need to filter locations later on.
  • Some tweets might talk about other countries reactions like "The US.." or "Russia.." or "Moscow..", in that case we remove all the locations that are not in Ukraine.
  • Some tweets might talk about multiple locations like "Shooting near the location and the location". In that case both locations are added to the map. Multiple markers can be added to the same location.
  • Finally we add markers for each tweet.
  • Markers will cluster together when you zoom out.
  • A single marker looks like a red pin on a map.
  • A cluster appears as a circle with a number inside it, the color shifts from green to orange to red depending on the number of markers in the cluster.
  • We are not taking data directly because that may be vulnerable to trolling and spamming.
  • We are using the Twitter v2 API to get the tweets, however it does not support parsing location directly from tweets.

(back to top)

Getting Started

To get a local copy up and running follow these simple example steps.

Prerequisites

  • Python
  • tweepy
  • spaCy
  • folium
  • geopy
  • tqdm
  • geography3 (optional, needed for experimental feature)

Installation

Python

  1. Get a free twitter Bearer Token from developer.twitter.com. Remember to create a new app and get the bearer token.
  2. Clone the repo
    git clone https://github.com/kinshukdua/LiveActionMap.git
  3. Install all prerequisites
    pip install -r requirements.txt
  4. Download en_core_web, for more info see --> explosion/spaCy#4577
     python3 -m spacy download en_core_web_sm
  5. Create a .env file based on the .env.example
    cp .env.example .env
  6. Set the Twitter bearer token to your own in the .env file created in the previous step.

Docker

  1. Get a Twitter Bearer Token
  2. Download the docker-compose.yaml-file
    wget https://raw.githubusercontent.com/kinshukdua/LiveActionMap/main/docker/docker-compose.yaml
  3. Create a .env file based on the .env.example
    wget https://raw.githubusercontent.com/kinshukdua/LiveActionMap/main/.env.example -O .env 
  4. Start the stack
    docker-compose up -d
    

(back to top)

Usage

Simply edit hashtags, prepositions and keywords and run scrape.py.

python scrape.py

(back to top)

Roadmap

  • Add tweet scraping
  • Add map
  • Add map clustering
  • Create a server to host the generated map
  • Add better filtering
  • Add tweet link on map
  • Use NLP to indicate danger level
  • Add misinformation prevention algorithm
  • Multi-language Support
    • Ukranian
    • Russian

See the open issues for a full list of proposed features (and known issues).

(back to top)

Contributing

Contributions are what make the open source community such an amazing place to learn, inspire, and create. Any contributions you make are greatly appreciated.

If you have a suggestion that would make this better, please fork the repo and create a pull request. You can also simply open an issue with the tag "enhancement". Don't forget to give the project a star! Thanks again!

  1. Fork the Project
  2. Create your Feature Branch (git checkout -b feature/AmazingFeature)
  3. Commit your Changes (git commit -m 'Add some AmazingFeature')
  4. Push to the Branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

(back to top)

License

Distributed under the MIT License. See LICENSE.txt for more information.

(back to top)

Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context

Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context This repository contains the code in both PyTorch and TensorFlow for our paper

Zhilin Yang 3.3k Dec 28, 2022
This repo stores the codes for topic modeling on palliative care journals.

This repo stores the codes for topic modeling on palliative care journals. Data Preparation You first need to download the journal papers. bash 1_down

3 Dec 20, 2022
TruthfulQA: Measuring How Models Imitate Human Falsehoods

TruthfulQA: Measuring How Models Imitate Human Falsehoods

69 Dec 25, 2022
Hierarchical unsupervised and semi-supervised topic models for sparse count data with CorEx

Anchored CorEx: Hierarchical Topic Modeling with Minimal Domain Knowledge Correlation Explanation (CorEx) is a topic model that yields rich topics tha

Greg Ver Steeg 592 Dec 18, 2022
gaiic2021-track3-小布助手对话短文本语义匹配复赛rank3、决赛rank4

决赛答辩已经过去一段时间了,我们队伍ac milan最终获得了复赛第3,决赛第4的成绩。在此首先感谢一些队友的carry~ 经过2个多月的比赛,学习收获了很多,也认识了很多大佬,在这里记录一下自己的参赛体验和学习收获。

102 Dec 19, 2022
IMS-Toucan is a toolkit to train state-of-the-art Speech Synthesis models

IMS-Toucan is a toolkit to train state-of-the-art Speech Synthesis models. Everything is pure Python and PyTorch based to keep it as simple and beginner-friendly, yet powerful as possible.

Digital Phonetics at the University of Stuttgart 247 Jan 05, 2023
GAP-text2SQL: Learning Contextual Representations for Semantic Parsing with Generation-Augmented Pre-Training

GAP-text2SQL: Learning Contextual Representations for Semantic Parsing with Generation-Augmented Pre-Training Code and model from our AAAI 2021 paper

Amazon Web Services - Labs 83 Jan 09, 2023
2021 2학기 데이터크롤링 기말프로젝트

공지 주제 웹 크롤링을 이용한 취업 공고 스케줄러 스케줄 주제 정하기 코딩하기 핵심 코드 설명 + 피피티 구조 구상 // 12/4 토 피피티 + 스크립트(대본) 제작 + 녹화 // ~ 12/10 ~ 12/11 금~토 영상 편집 // ~12/11 토 웹크롤러 사람인_평균

Choi Eun Jeong 2 Aug 16, 2022
多语言降噪预训练模型MBart的中文生成任务

mbart-chinese 基于mbart-large-cc25 的中文生成任务 Input source input: text + /s + lang_code target input: lang_code + text + /s Usage token_ids_mapping.jso

11 Sep 19, 2022
Telegram AI chat bot written in Python using Pyrogram

Aurora_Al Just another Telegram AI chat bot written in Python using Pyrogram. A public running instance can be found on telegram as @AuroraAl. Require

♗CσNϙUҽRσR_MҽSƙEƚҽҽR 1 Oct 31, 2021
Neural building blocks for speaker diarization: speech activity detection, speaker change detection, overlapped speech detection, speaker embedding

⚠️ Checkout develop branch to see what is coming in pyannote.audio 2.0: a much smaller and cleaner codebase Python-first API (the good old pyannote-au

pyannote 2.2k Jan 09, 2023
Machine Learning Course Project, IMDB movie review sentiment analysis by lstm, cnn, and transformer

IMDB Sentiment Analysis This is the final project of Machine Learning Courses in Huazhong University of Science and Technology, School of Artificial I

Daniel 0 Dec 27, 2021
Pangu-Alpha for Transformers

Pangu-Alpha for Transformers Usage Download MindSpore FP32 weights for GPU from here to data/Pangu-alpha_2.6B.ckpt Activate MindSpore environment and

One 5 Oct 01, 2022
🕹 An esoteric language designed so that the program looks like the transcript of a Pokémon battle

PokéBattle is an esoteric language designed so that the program looks like the transcript of a Pokémon battle. Original inspiration and specification

Eduardo Correia 9 Jan 11, 2022
MPNet: Masked and Permuted Pre-training for Language Understanding

MPNet MPNet: Masked and Permuted Pre-training for Language Understanding, by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu, is a novel pre-tr

Microsoft 228 Nov 21, 2022
Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)

TOPSIS implementation in Python Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) CHING-LAI Hwang and Yoon introduced TOPSIS

Hamed Baziyad 8 Dec 10, 2022
Code for the paper: Sequence-to-Sequence Learning with Latent Neural Grammars

Code for the paper: Sequence-to-Sequence Learning with Latent Neural Grammars

Yoon Kim 43 Dec 23, 2022
In this project, we aim to achieve the task of predicting emojis from tweets. We aim to investigate the relationship between words and emojis.

Making Emojis More Predictable by Karan Abrol, Karanjot Singh and Pritish Wadhwa, Natural Language Processing (CSE546) under the guidance of Dr. Shad

Karanjot Singh 2 Jan 17, 2022
Flexible interface for high-performance research using SOTA Transformers leveraging Pytorch Lightning, Transformers, and Hydra.

Flexible interface for high performance research using SOTA Transformers leveraging Pytorch Lightning, Transformers, and Hydra. What is Lightning Tran

Pytorch Lightning 581 Dec 21, 2022