Code for paper Multitask-Finetuning of Zero-shot Vision-Language Models

Overview

Downloading our datasets

Dataset structure

  • Each dataset may have several subdatasets (most of them only have one)
|
   
   
    
    
    |dataset/
        -|
    
    
     
     
            -|
     
     
      
      
            -|
      
      
       
       
        -|
       
       
         ... |pickled/ -|tensor_dict.pt 
       
      
      
     
     
    
    
   
   
  • The pickle file tensor_dict.pt has the following format:
{
    'subdataset_1':{
        'label_1':{
            'image_tensors':np.array((N,3,224,224)), # N: image number
            'input_ids':np.array(S), # S: token length of the filled template text
            'attention_masks':np.array(S),
            'template_input_ids':np.array(S_), # S_: token length of the un-filled template text
            'template_attention_masks':np.array(S_),
        },
        'label_2':{
            ...
        }
    },
    ...
}
  • ABO dataset contains an additional label_to_text.json file, which provides text template for each subdataset and label.

A list of available datasets and subdatasets

Dataset dataset name (-i) subdataset name (-d)
Clevr Counting ClevrCounting counting
Amazon Berkeley Objects (ABO) ABO material,color
Caltech-UCSD Birds 200 (CUB) CUB classification
Fungi Fungi classification
Mini-imagenet mini classification

Training with provided datasets

run.sh provided example code for performing training and meta-testing on our datasets.

Output format

Each model checkpoint dir contains two files:

  • step1.ckpt: model checkpoint after training phase
  • dev_test_results.json: scores on each task configuration on dev and test set during meta-testing

Loading checkpoint

  • Here is an example snippet for loading step1.ckpt from multitask-finetuning/classical-finetuning/zeroshot models:
/step1.ckpt")">
    model = MultitaskFinetuneCLIP()
    model = model.load_from_checkpoint(checkpoint_path="
    
    
     
     /step1.ckpt")

    
    
  • Here is an example snippet for loading step1.ckpt from fomaml models:
/step1.ckpt"))">
    model = LightningCLIP()
    model = l2l.algorithms.MAML(model, lr=1e-5 first_order=True)
    model.load_state_dict(torch.load("
    
    
     
     /step1.ckpt"))

    
    

Training with custom datasets

preprocess dataset

  • put your new dataset in the same format as provided dataset into data/
  • Specify template_function or the path to label_to_text json file (an example file can be found in /data/ABO/label_to_text.json) at line 350 and 355 in data.py
  • preprocess.sh provides an example of running data.py to create pickle file for your new dataset
  • add your dataset into construct_dataset(): line 77 in train.py and line 80 in train_MAML.py

train

  • modify run.sh to train and meta-test on your own dataset
  • refer to train.py and train_MAML.py for default and tuning hyperparameters for each algorithm

Citation

Owner
Zhenhailong Wang
MSCS at UIUC, Research Assistant at BLENDER lab advised by Prof. Heng Ji
Zhenhailong Wang
Facebook AI Research Sequence-to-Sequence Toolkit written in Python.

Fairseq(-py) is a sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization, language mod

13.2k Jul 07, 2021
Code for Findings at EMNLP 2021 paper: "Learn Continually, Generalize Rapidly: Lifelong Knowledge Accumulation for Few-shot Learning"

Learn Continually, Generalize Rapidly: Lifelong Knowledge Accumulation for Few-shot Learning This repo is for Findings at EMNLP 2021 paper: Learn Cont

INK Lab @ USC 6 Sep 02, 2022
A script that automatically creates a branch name using google translation api and jira api

About google translation api와 jira api을 사용하여 자동으로 브랜치 이름을 만들어주는 스크립트 Setup 환경변수에 다음 3가지를 등록해야 한다. JIRA_USER : JIRA email (ex: hyunwook.kim 2 Dec 20, 2021

HAN2HAN : Hangul Font Generation

HAN2HAN : Hangul Font Generation

Changwoo Lee 36 Dec 28, 2022
this repository has datasets containing information of Uber pickups in NYC from April 2014 to September 2014 and January to June 2015. data Analysis , virtualization and some insights are gathered here

uber-pickups-analysis Data Source: https://www.kaggle.com/fivethirtyeight/uber-pickups-in-new-york-city Information about data set The dataset contain

1 Nov 02, 2021
Code release for NeX: Real-time View Synthesis with Neural Basis Expansion

NeX: Real-time View Synthesis with Neural Basis Expansion Project Page | Video | Paper | COLAB | Shiny Dataset We present NeX, a new approach to novel

537 Jan 05, 2023
GPT-3: Language Models are Few-Shot Learners

GPT-3: Language Models are Few-Shot Learners arXiv link Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-trainin

OpenAI 12.5k Jan 05, 2023
Trankit is a Light-Weight Transformer-based Python Toolkit for Multilingual Natural Language Processing

Trankit: A Light-Weight Transformer-based Python Toolkit for Multilingual Natural Language Processing Trankit is a light-weight Transformer-based Pyth

652 Jan 06, 2023
Text Classification in Turkish Texts with Bert

You can watch the details of the project on my youtube channel Project Interface Project Second Interface Goal= Correctly guessing the classification

42 Dec 31, 2022
The repository for the paper: Multilingual Translation via Grafting Pre-trained Language Models

Graformer The repository for the paper: Multilingual Translation via Grafting Pre-trained Language Models Graformer (also named BridgeTransformer in t

22 Dec 14, 2022
Question answering app is used to answer for a user given question from user given text.

Question answering app is used to answer for a user given question from user given text.It is created using HuggingFace's transformer pipeline and streamlit python packages.

Siva Prakash 3 Apr 05, 2022
Code for CodeT5: a new code-aware pre-trained encoder-decoder model.

CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and Generation This is the official PyTorch implementation

Salesforce 564 Jan 08, 2023
Finetune gpt-2 in google colab

gpt-2-colab finetune gpt-2 in google colab sample result (117M) from retraining on A Tale of Two Cities by Charles Di

212 Jan 02, 2023
SentAugment is a data augmentation technique for semi-supervised learning in NLP.

SentAugment SentAugment is a data augmentation technique for semi-supervised learning in NLP. It uses state-of-the-art sentence embeddings to structur

Meta Research 363 Dec 30, 2022
Training RNNs as Fast as CNNs

News SRU++, a new SRU variant, is released. [tech report] [blog] The experimental code and SRU++ implementation are available on the dev branch which

Tao Lei 14 Dec 12, 2022
SAINT PyTorch implementation

SAINT-pytorch A Simple pyTorch implementation of "Towards an Appropriate Query, Key, and Value Computation for Knowledge Tracing" based on https://arx

Arshad Shaikh 63 Dec 25, 2022
This repository has a implementations of data augmentation for NLP for Japanese.

daaja This repository has a implementations of data augmentation for NLP for Japanese: EDA: Easy Data Augmentation Techniques for Boosting Performance

Koga Kobayashi 60 Nov 11, 2022
Espial is an engine for automated organization and discovery of personal knowledge

Live Demo (currently not running, on it) Espial is an engine for automated organization and discovery in knowledge bases. It can be adapted to run wit

Uzay-G 159 Dec 30, 2022
keras implement of transformers for humans

keras implement of transformers for humans

苏剑林(Jianlin Su) 4.8k Jan 03, 2023
Wikipedia-Utils: Preprocessing Wikipedia Texts for NLP

Wikipedia-Utils: Preprocessing Wikipedia Texts for NLP This repository maintains some utility scripts for retrieving and preprocessing Wikipedia text

Masatoshi Suzuki 44 Oct 19, 2022