Code for paper Multitask-Finetuning of Zero-shot Vision-Language Models

Overview

Downloading our datasets

Dataset structure

  • Each dataset may have several subdatasets (most of them only have one)
|
   
   
    
    
    |dataset/
        -|
    
    
     
     
            -|
     
     
      
      
            -|
      
      
       
       
        -|
       
       
         ... |pickled/ -|tensor_dict.pt 
       
      
      
     
     
    
    
   
   
  • The pickle file tensor_dict.pt has the following format:
{
    'subdataset_1':{
        'label_1':{
            'image_tensors':np.array((N,3,224,224)), # N: image number
            'input_ids':np.array(S), # S: token length of the filled template text
            'attention_masks':np.array(S),
            'template_input_ids':np.array(S_), # S_: token length of the un-filled template text
            'template_attention_masks':np.array(S_),
        },
        'label_2':{
            ...
        }
    },
    ...
}
  • ABO dataset contains an additional label_to_text.json file, which provides text template for each subdataset and label.

A list of available datasets and subdatasets

Dataset dataset name (-i) subdataset name (-d)
Clevr Counting ClevrCounting counting
Amazon Berkeley Objects (ABO) ABO material,color
Caltech-UCSD Birds 200 (CUB) CUB classification
Fungi Fungi classification
Mini-imagenet mini classification

Training with provided datasets

run.sh provided example code for performing training and meta-testing on our datasets.

Output format

Each model checkpoint dir contains two files:

  • step1.ckpt: model checkpoint after training phase
  • dev_test_results.json: scores on each task configuration on dev and test set during meta-testing

Loading checkpoint

  • Here is an example snippet for loading step1.ckpt from multitask-finetuning/classical-finetuning/zeroshot models:
/step1.ckpt")">
    model = MultitaskFinetuneCLIP()
    model = model.load_from_checkpoint(checkpoint_path="
    
    
     
     /step1.ckpt")

    
    
  • Here is an example snippet for loading step1.ckpt from fomaml models:
/step1.ckpt"))">
    model = LightningCLIP()
    model = l2l.algorithms.MAML(model, lr=1e-5 first_order=True)
    model.load_state_dict(torch.load("
    
    
     
     /step1.ckpt"))

    
    

Training with custom datasets

preprocess dataset

  • put your new dataset in the same format as provided dataset into data/
  • Specify template_function or the path to label_to_text json file (an example file can be found in /data/ABO/label_to_text.json) at line 350 and 355 in data.py
  • preprocess.sh provides an example of running data.py to create pickle file for your new dataset
  • add your dataset into construct_dataset(): line 77 in train.py and line 80 in train_MAML.py

train

  • modify run.sh to train and meta-test on your own dataset
  • refer to train.py and train_MAML.py for default and tuning hyperparameters for each algorithm

Citation

Owner
Zhenhailong Wang
MSCS at UIUC, Research Assistant at BLENDER lab advised by Prof. Heng Ji
Zhenhailong Wang
Mesh TensorFlow: Model Parallelism Made Easier

Mesh TensorFlow - Model Parallelism Made Easier Introduction Mesh TensorFlow (mtf) is a language for distributed deep learning, capable of specifying

1.3k Dec 26, 2022
Image2pcl - Enter the metaverse with 2D image to 3D projections

Image2PCL Enter the metaverse with 2D image to 3D projections! This is an implem

Benjamin Ho 0 Feb 05, 2022
Quick insights from Zoom meeting transcripts using Graph + NLP

Transcript Analysis - Graph + NLP This program extracts insights from Zoom Meeting Transcripts (.vtt) using TigerGraph and NLTK. In order to run this

Advit Deepak 7 Sep 17, 2022
Top2Vec is an algorithm for topic modeling and semantic search.

Top2Vec is an algorithm for topic modeling and semantic search. It automatically detects topics present in text and generates jointly embedded topic, document and word vectors.

Dimo Angelov 2.4k Jan 06, 2023
A desktop GUI providing an audio interface for GPT3.

Jabberwocky neil_degrasse_tyson_with_audio.mp4 Project Description This GUI provides an audio interface to GPT-3. My main goal was to provide a conven

16 Nov 27, 2022
Question answering app is used to answer for a user given question from user given text.

Question answering app is used to answer for a user given question from user given text.It is created using HuggingFace's transformer pipeline and streamlit python packages.

Siva Prakash 3 Apr 05, 2022
WikiPron - a command-line tool and Python API for mining multilingual pronunciation data from Wiktionary

WikiPron WikiPron is a command-line tool and Python API for mining multilingual pronunciation data from Wiktionary, as well as a database of pronuncia

213 Jan 01, 2023
Code for the paper TestRank: Bringing Order into Unlabeled Test Instances for Deep Learning Tasks

TestRank in Pytorch Code for the paper TestRank: Bringing Order into Unlabeled Test Instances for Deep Learning Tasks by Yu Li, Min Li, Qiuxia Lai, Ya

3 May 19, 2022
Signature remover is a NLP based solution which removes email signatures from the rest of the text.

Signature Remover Signature remover is a NLP based solution which removes email signatures from the rest of the text. It helps to enchance data conten

Forges Alterway 8 Jan 06, 2023
A collection of scripts to preprocess ASR datasets and finetune language-specific Wav2Vec2 XLSR models

wav2vec-toolkit A collection of scripts to preprocess ASR datasets and finetune language-specific Wav2Vec2 XLSR models This repository accompanies the

Anton Lozhkov 29 Oct 23, 2022
NLP-based analysis of poor Chinese movie reviews on Douban

douban_embedding 豆瓣中文影评差评分析 1. NLP NLP(Natural Language Processing)是指自然语言处理,他的目的是让计算机可以听懂人话。 下面是我将2万条豆瓣影评训练之后,随意输入一段新影评交给神经网络,最终AI推断出的结果。 "很好,演技不错

3 Apr 15, 2022
BookNLP, a natural language processing pipeline for books

BookNLP BookNLP is a natural language processing pipeline that scales to books and other long documents (in English), including: Part-of-speech taggin

654 Jan 02, 2023
Non-Autoregressive Translation with Layer-Wise Prediction and Deep Supervision

Deeply Supervised, Layer-wise Prediction-aware (DSLP) Transformer for Non-autoregressive Neural Machine Translation

Chenyang Huang 37 Jan 04, 2023
Finally, some decent sample sentences

tts-dataset-prompts This repository aims to be a decent set of sentences for people looking to clone their own voices (e.g. using Tacotron 2). Each se

hecko 19 Dec 13, 2022
NLP - Machine learning

Flipkart-product-reviews NLP - Machine learning About Product reviews is an essential part of an online store like Flipkart’s branding and marketing.

Harshith VH 1 Oct 29, 2021
Some embedding layer implementation using ivy library

ivy-manual-embeddings Some embedding layer implementation using ivy library. Just for fun. It is based on NYCTaxiFare dataset from kaggle (cut down to

Ishtiaq Hussain 2 Feb 10, 2022
IMDB film review sentiment classification based on BERT's supervised learning model.

IMDB film review sentiment classification based on BERT's supervised learning model. On the other hand, the model can be extended to other natural language multi-classification tasks.

Paris 1 Apr 17, 2022
Wind Speed Prediction using LSTMs in PyTorch

Implementation of Deep-Forecast using PyTorch Deep Forecast: Deep Learning-based Spatio-Temporal Forecasting Adapted from original implementation Setu

Onur Kaplan 151 Dec 14, 2022
Bnagla hand written document digiiztion

Bnagla hand written document digiiztion This repo addresses the problem of digiizing hand written documents in Bangla. Documents have definite fields

Mushfiqur Rahman 1 Dec 10, 2021
Score-Based Point Cloud Denoising (ICCV'21)

Score-Based Point Cloud Denoising (ICCV'21) [Paper] https://arxiv.org/abs/2107.10981 Installation Recommended Environment The code has been tested in

Shitong Luo 79 Dec 26, 2022