📝An easy-to-use package to restore punctuation of the text.

Related tags

Text Data & NLPrpunct
Overview

✏️ rpunct - Restore Punctuation

forthebadge

This repo contains code for Punctuation restoration.

This package is intended for direct use as a punctuation restoration model for the general English language. Alternatively, you can use this for further fine-tuning on domain-specific texts for punctuation restoration tasks. It uses HuggingFace's bert-base-uncased model weights that have been fine-tuned for Punctuation restoration.

Punctuation restoration works on arbitrarily large text. And uses GPU if it's available otherwise will default to CPU.

List of punctuations we restore:

  • Upper-casing
  • Period: .
  • Exclamation: !
  • Question Mark: ?
  • Comma: ,
  • Colon: :
  • Semi-colon: ;
  • Apostrophe: '
  • Dash: -

🚀 Usage

Below is a quick way to get up and running with the model.

  1. First, install the package.
pip install rpunct
  1. Sample python code.
from rpunct import RestorePuncts
# The default language is 'english'
rpunct = RestorePuncts()
rpunct.punctuate("""in 2018 cornell researchers built a high-powered detector that in combination with an algorithm-driven process called ptychography set a world record
by tripling the resolution of a state-of-the-art electron microscope as successful as it was that approach had a weakness it only worked with ultrathin samples that were
a few atoms thick anything thicker would cause the electrons to scatter in ways that could not be disentangled now a team again led by david muller the samuel b eckert
professor of engineering has bested its own record by a factor of two with an electron microscope pixel array detector empad that incorporates even more sophisticated
3d reconstruction algorithms the resolution is so fine-tuned the only blurring that remains is the thermal jiggling of the atoms themselves""")
# Outputs the following:
# In 2018, Cornell researchers built a high-powered detector that, in combination with an algorithm-driven process called Ptychography, set a world record by tripling the
# resolution of a state-of-the-art electron microscope. As successful as it was, that approach had a weakness. It only worked with ultrathin samples that were a few atoms
# thick. Anything thicker would cause the electrons to scatter in ways that could not be disentangled. Now, a team again led by David Muller, the Samuel B. 
# Eckert Professor of Engineering, has bested its own record by a factor of two with an Electron microscope pixel array detector empad that incorporates even more
# sophisticated 3d reconstruction algorithms. The resolution is so fine-tuned the only blurring that remains is the thermal jiggling of the atoms themselves.

🎯 Accuracy

Here is the number of product reviews we used for finetuning the model:

Language Number of text samples
English 560,000

We found the best convergence around 3 epochs, which is what presented here and available via a download.


The fine-tuned model obtained the following accuracy on 45,990 held-out text samples:

Accuracy Overall F1 Eval Support
91% 90% 45,990

💻 🎯 Further Fine-Tuning

To start fine-tuning or training please look into training/train.py file. Running python training/train.py will replicate the results of this model.


Contact

Contact Daulet Nurmanbetov for questions, feedback and/or requests for similar models.


Comments
  • Update requirements.txt

    Update requirements.txt

    ERROR: Could not find a version that satisfies the requirement torch==1.8.1 (from rpunct) (from versions: 1.11.0, 1.12.0, 1.12.1, 1.13.0) ERROR: No matching distribution found for torch==1.8.1

    opened by Rukaya-lab 0
  • Forked repo with fixes

    Forked repo with fixes

    I forked this repository (link here) to fix the outdated dependencies and incompatibility with non-CUDA machines. If anyone needs these fixes, feel free to install from the fork:

    pip install git+https://github.com/samwaterbury/rpunct.git
    

    Hopefully this repository is updated or another maintainer is assigned. And thanks to the creator @Felflare, this is a useful tool!

    opened by samwaterbury 2
  • Requirements shouldn't ask for such specific versions

    Requirements shouldn't ask for such specific versions

    First, thanks a lot for providing this package :)

    Currently, the requirements.txt, and thus the dependencies in the setup.py are for very specific versions of Pytorch etc. This shouldn't be the case if you want this package to be used as a general library (think of a second package that would do the same but ask for an incompatible version of PyTorch and would prevent any possible installation of the two together). The end user might also be needing a more recent version of PyTorch. Given that PyTorch is almost always backward compatible, and quite stable, I think the requirements for it could be changed from ==1.8.1 to >=1.8.1. I believe the same would be true for the other packages.

    opened by adefossez 2
  • Added ability to pass additional parameters to simpletransformer ner in RestorePuncts class.

    Added ability to pass additional parameters to simpletransformer ner in RestorePuncts class.

    Thanks for the great library! When running this without a GPU I had problems. I think there is a simple fix. The simple transformer NER model defaults to enabling cuda. This PR allows the user to pass a dictionary of arguments specifically for the simpletransformers NER model. So you can now run the code on a CPU by initializing rpunct like so

    rpunct = RestorePuncts(ner_args={"use_cuda": False})
    

    Before this change, when running rpunct examples on the CPU the following error occurs:

    from rpunct import RestorePuncts
    # The default language is 'english'
    rpunct = RestorePuncts()
    rpunct.punctuate("""in 2018 cornell researchers built a high-powered detector that in combination with an algorithm-driven process called ptychography set a world record
    by tripling the resolution of a state-of-the-art electron microscope as successful as it was that approach had a weakness it only worked with ultrathin samples that were
    a few atoms thick anything thicker would cause the electrons to scatter in ways that could not be disentangled now a team again led by david muller the samuel b eckert
    professor of engineering has bested its own record by a factor of two with an electron microscope pixel array detector empad that incorporates even more sophisticated
    3d reconstruction algorithms the resolution is so fine-tuned the only blurring that remains is the thermal jiggling of the atoms themselves""")
    
    

    ValueError Traceback (most recent call last) /var/folders/hx/dhzhl_x51118fm5cd13vzh2h0000gn/T/ipykernel_10548/194907560.py in 1 from rpunct import RestorePuncts 2 # The default language is 'english' ----> 3 rpunct = RestorePuncts() 4 rpunct.punctuate("""in 2018 cornell researchers built a high-powered detector that in combination with an algorithm-driven process called ptychography set a world record 5 by tripling the resolution of a state-of-the-art electron microscope as successful as it was that approach had a weakness it only worked with ultrathin samples that were

    ~/repos/rpunct/rpunct/punctuate.py in init(self, wrds_per_pred, ner_args) 19 if ner_args is None: 20 ner_args = {} ---> 21 self.model = NERModel("bert", "felflare/bert-restore-punctuation", labels=self.valid_labels, 22 args={"silent": True, "max_seq_length": 512}, **ner_args) 23

    ~/repos/transformers/transformer-env/lib/python3.8/site-packages/simpletransformers/ner/ner_model.py in init(self, model_type, model_name, labels, args, use_cuda, cuda_device, onnx_execution_provider, **kwargs) 209 self.device = torch.device(f"cuda:{cuda_device}") 210 else: --> 211 raise ValueError( 212 "'use_cuda' set to True when cuda is unavailable." 213 "Make sure CUDA is available or set use_cuda=False."

    ValueError: 'use_cuda' set to True when cuda is unavailable.Make sure CUDA is available or set use_cuda=False.

    opened by nbertagnolli 1
  • add use_cuda parameter

    add use_cuda parameter

    using the package in an environment without cuda support causes it to fail. Adding the parameter to shut it off if necessary allows it to function normall.

    opened by mjfox3 1
Releases(1.0.1)
Owner
Daulet Nurmanbetov
Deep Learning, AI and Finance
Daulet Nurmanbetov
KakaoBrain KoGPT (Korean Generative Pre-trained Transformer)

KoGPT KoGPT (Korean Generative Pre-trained Transformer) https://github.com/kakaobrain/kogpt https://huggingface.co/kakaobrain/kogpt Model Descriptions

Kakao Brain 797 Dec 26, 2022
Nested Named Entity Recognition

Nested Named Entity Recognition Training Dataset: CBLUE: A Chinese Biomedical Language Understanding Evaluation Benchmark url: https://tianchi.aliyun.

8 Dec 25, 2022
A PyTorch implementation of the Transformer model in "Attention is All You Need".

Attention is all you need: A Pytorch Implementation This is a PyTorch implementation of the Transformer model in "Attention is All You Need" (Ashish V

Yu-Hsiang Huang 7.1k Jan 05, 2023
Ptorch NLU, a Chinese text classification and sequence annotation toolkit, supports multi class and multi label classification tasks of Chinese long text and short text, and supports sequence annotation tasks such as Chinese named entity recognition, part of speech tagging and word segmentation.

Pytorch-NLU,一个中文文本分类、序列标注工具包,支持中文长文本、短文本的多类、多标签分类任务,支持中文命名实体识别、词性标注、分词等序列标注任务。 Ptorch NLU, a Chinese text classification and sequence annotation toolkit, supports multi class and multi label classifi

186 Dec 24, 2022
This is a general repo that helps you develop fast/effective NLP classifiers using Huggingface

NLP Classifier Introduction This project trains a bert model on any NLP classifcation model. And uses the model in make predictions on new data using

Abdullah Tarek 3 Mar 11, 2022
Random Directed Acyclic Graph Generator

DAG_Generator Random Directed Acyclic Graph Generator verison1.0 简介 工作流通常由DAG(有向无环图)来定义,其中每个计算任务$T_i$由一个顶点(node,task,vertex)表示。同时,任务之间的每个数据或控制依赖性由一条加权

Livion 17 Dec 27, 2022
Transformer - A TensorFlow Implementation of the Transformer: Attention Is All You Need

[UPDATED] A TensorFlow Implementation of Attention Is All You Need When I opened this repository in 2017, there was no official code yet. I tried to i

Kyubyong Park 3.8k Dec 26, 2022
构建一个多源(公众号、RSS)、干净、个性化的阅读环境

2C 构建一个多源(公众号、RSS)、干净、个性化的阅读环境 作为一名微信公众号的重度用户,公众号一直被我设为汲取知识的地方。随着使用程度的增加,相信大家或多或少会有一个比较头疼的问题——广告问题。 假设你关注的公众号有十来个,若一个公众号两周接一次广告,理论上你会面临二十多次广告,实际上会更多,运

howie.hu 678 Dec 28, 2022
A paper list of pre-trained language models (PLMs).

Large-scale pre-trained language models (PLMs) such as BERT and GPT have achieved great success and become a milestone in NLP.

RUCAIBox 124 Jan 02, 2023
CDLA: A Chinese document layout analysis (CDLA) dataset

CDLA: A Chinese document layout analysis (CDLA) dataset 介绍 CDLA是一个中文文档版面分析数据集,面向中文文献类(论文)场景。包含以下10个label: 正文 标题 图片 图片标题 表格 表格标题 页眉 页脚 注释 公式 Text Title

buptlihang 84 Dec 28, 2022
Just a basic Telegram AI chat bot written in Python using Pyrogram.

Nikko ChatBot Just a basic Telegram AI chat bot written in Python using Pyrogram. Requirements Python 3.7 or higher. A bot token. Installation $ https

ʀᴇxɪɴᴀᴢᴏʀ 2 Oct 21, 2022
Datasets of Automatic Keyphrase Extraction

This repository contains 20 annotated datasets of Automatic Keyphrase Extraction made available by the research community. Following are the datasets and the original papers that proposed them. If yo

LIAAD - Laboratory of Artificial Intelligence and Decision Support 163 Dec 23, 2022
Need: Image Search With Python

Need: Image Search The problem is that a user needs to search for a specific ima

Surya Komandooru 1 Dec 30, 2021
Translates basic English sentences into the Huna language (hoo-NAH)

huna-translator The Huna Language Translates basic English sentences into the Huna language (hoo-NAH). The Huna constructed language was developed in

Miles Smith 0 Jan 20, 2022
Large-scale pretraining for dialogue

A State-of-the-Art Large-scale Pretrained Response Generation Model (DialoGPT) This repository contains the source code and trained model for a large-

Microsoft 1.8k Jan 07, 2023
Trains an OpenNMT PyTorch model and SentencePiece tokenizer.

Trains an OpenNMT PyTorch model and SentencePiece tokenizer. Designed for use with Argos Translate and LibreTranslate.

Argos Open Tech 61 Dec 13, 2022
A python package to fine-tune transformer-based models for named entity recognition (NER).

nerblackbox A python package to fine-tune transformer-based language models for named entity recognition (NER). Resources Source Code: https://github.

Felix Stollenwerk 13 Jul 30, 2022
A framework for implementing federated learning

This is partly the reproduction of the paper of [Privacy-Preserving Federated Learning in Fog Computing](DOI: 10.1109/JIOT.2020.2987958. 2020)

DavidChen 46 Sep 23, 2022
Python library to make development of portfolio analysis faster and easier

Trafalgar Python library to make development of portfolio analysis faster and easier Installation 🔥 For the moment, Trafalgar is still in beta develo

Santosh Passoubady 641 Jan 01, 2023