📝An easy-to-use package to restore punctuation of the text.

Related tags

Text Data & NLPrpunct
Overview

✏️ rpunct - Restore Punctuation

forthebadge

This repo contains code for Punctuation restoration.

This package is intended for direct use as a punctuation restoration model for the general English language. Alternatively, you can use this for further fine-tuning on domain-specific texts for punctuation restoration tasks. It uses HuggingFace's bert-base-uncased model weights that have been fine-tuned for Punctuation restoration.

Punctuation restoration works on arbitrarily large text. And uses GPU if it's available otherwise will default to CPU.

List of punctuations we restore:

  • Upper-casing
  • Period: .
  • Exclamation: !
  • Question Mark: ?
  • Comma: ,
  • Colon: :
  • Semi-colon: ;
  • Apostrophe: '
  • Dash: -

🚀 Usage

Below is a quick way to get up and running with the model.

  1. First, install the package.
pip install rpunct
  1. Sample python code.
from rpunct import RestorePuncts
# The default language is 'english'
rpunct = RestorePuncts()
rpunct.punctuate("""in 2018 cornell researchers built a high-powered detector that in combination with an algorithm-driven process called ptychography set a world record
by tripling the resolution of a state-of-the-art electron microscope as successful as it was that approach had a weakness it only worked with ultrathin samples that were
a few atoms thick anything thicker would cause the electrons to scatter in ways that could not be disentangled now a team again led by david muller the samuel b eckert
professor of engineering has bested its own record by a factor of two with an electron microscope pixel array detector empad that incorporates even more sophisticated
3d reconstruction algorithms the resolution is so fine-tuned the only blurring that remains is the thermal jiggling of the atoms themselves""")
# Outputs the following:
# In 2018, Cornell researchers built a high-powered detector that, in combination with an algorithm-driven process called Ptychography, set a world record by tripling the
# resolution of a state-of-the-art electron microscope. As successful as it was, that approach had a weakness. It only worked with ultrathin samples that were a few atoms
# thick. Anything thicker would cause the electrons to scatter in ways that could not be disentangled. Now, a team again led by David Muller, the Samuel B. 
# Eckert Professor of Engineering, has bested its own record by a factor of two with an Electron microscope pixel array detector empad that incorporates even more
# sophisticated 3d reconstruction algorithms. The resolution is so fine-tuned the only blurring that remains is the thermal jiggling of the atoms themselves.

🎯 Accuracy

Here is the number of product reviews we used for finetuning the model:

Language Number of text samples
English 560,000

We found the best convergence around 3 epochs, which is what presented here and available via a download.


The fine-tuned model obtained the following accuracy on 45,990 held-out text samples:

Accuracy Overall F1 Eval Support
91% 90% 45,990

💻 🎯 Further Fine-Tuning

To start fine-tuning or training please look into training/train.py file. Running python training/train.py will replicate the results of this model.


Contact

Contact Daulet Nurmanbetov for questions, feedback and/or requests for similar models.


Comments
  • Update requirements.txt

    Update requirements.txt

    ERROR: Could not find a version that satisfies the requirement torch==1.8.1 (from rpunct) (from versions: 1.11.0, 1.12.0, 1.12.1, 1.13.0) ERROR: No matching distribution found for torch==1.8.1

    opened by Rukaya-lab 0
  • Forked repo with fixes

    Forked repo with fixes

    I forked this repository (link here) to fix the outdated dependencies and incompatibility with non-CUDA machines. If anyone needs these fixes, feel free to install from the fork:

    pip install git+https://github.com/samwaterbury/rpunct.git
    

    Hopefully this repository is updated or another maintainer is assigned. And thanks to the creator @Felflare, this is a useful tool!

    opened by samwaterbury 2
  • Requirements shouldn't ask for such specific versions

    Requirements shouldn't ask for such specific versions

    First, thanks a lot for providing this package :)

    Currently, the requirements.txt, and thus the dependencies in the setup.py are for very specific versions of Pytorch etc. This shouldn't be the case if you want this package to be used as a general library (think of a second package that would do the same but ask for an incompatible version of PyTorch and would prevent any possible installation of the two together). The end user might also be needing a more recent version of PyTorch. Given that PyTorch is almost always backward compatible, and quite stable, I think the requirements for it could be changed from ==1.8.1 to >=1.8.1. I believe the same would be true for the other packages.

    opened by adefossez 2
  • Added ability to pass additional parameters to simpletransformer ner in RestorePuncts class.

    Added ability to pass additional parameters to simpletransformer ner in RestorePuncts class.

    Thanks for the great library! When running this without a GPU I had problems. I think there is a simple fix. The simple transformer NER model defaults to enabling cuda. This PR allows the user to pass a dictionary of arguments specifically for the simpletransformers NER model. So you can now run the code on a CPU by initializing rpunct like so

    rpunct = RestorePuncts(ner_args={"use_cuda": False})
    

    Before this change, when running rpunct examples on the CPU the following error occurs:

    from rpunct import RestorePuncts
    # The default language is 'english'
    rpunct = RestorePuncts()
    rpunct.punctuate("""in 2018 cornell researchers built a high-powered detector that in combination with an algorithm-driven process called ptychography set a world record
    by tripling the resolution of a state-of-the-art electron microscope as successful as it was that approach had a weakness it only worked with ultrathin samples that were
    a few atoms thick anything thicker would cause the electrons to scatter in ways that could not be disentangled now a team again led by david muller the samuel b eckert
    professor of engineering has bested its own record by a factor of two with an electron microscope pixel array detector empad that incorporates even more sophisticated
    3d reconstruction algorithms the resolution is so fine-tuned the only blurring that remains is the thermal jiggling of the atoms themselves""")
    
    

    ValueError Traceback (most recent call last) /var/folders/hx/dhzhl_x51118fm5cd13vzh2h0000gn/T/ipykernel_10548/194907560.py in 1 from rpunct import RestorePuncts 2 # The default language is 'english' ----> 3 rpunct = RestorePuncts() 4 rpunct.punctuate("""in 2018 cornell researchers built a high-powered detector that in combination with an algorithm-driven process called ptychography set a world record 5 by tripling the resolution of a state-of-the-art electron microscope as successful as it was that approach had a weakness it only worked with ultrathin samples that were

    ~/repos/rpunct/rpunct/punctuate.py in init(self, wrds_per_pred, ner_args) 19 if ner_args is None: 20 ner_args = {} ---> 21 self.model = NERModel("bert", "felflare/bert-restore-punctuation", labels=self.valid_labels, 22 args={"silent": True, "max_seq_length": 512}, **ner_args) 23

    ~/repos/transformers/transformer-env/lib/python3.8/site-packages/simpletransformers/ner/ner_model.py in init(self, model_type, model_name, labels, args, use_cuda, cuda_device, onnx_execution_provider, **kwargs) 209 self.device = torch.device(f"cuda:{cuda_device}") 210 else: --> 211 raise ValueError( 212 "'use_cuda' set to True when cuda is unavailable." 213 "Make sure CUDA is available or set use_cuda=False."

    ValueError: 'use_cuda' set to True when cuda is unavailable.Make sure CUDA is available or set use_cuda=False.

    opened by nbertagnolli 1
  • add use_cuda parameter

    add use_cuda parameter

    using the package in an environment without cuda support causes it to fail. Adding the parameter to shut it off if necessary allows it to function normall.

    opened by mjfox3 1
Releases(1.0.1)
Owner
Daulet Nurmanbetov
Deep Learning, AI and Finance
Daulet Nurmanbetov
Tracking Progress in Natural Language Processing

Repository to track the progress in Natural Language Processing (NLP), including the datasets and the current state-of-the-art for the most common NLP tasks.

Sebastian Ruder 21.2k Dec 30, 2022
An ActivityWatch watcher to pose questions to the user and record her answers.

aw-watcher-ask An ActivityWatch watcher to pose questions to the user and record her answers. This watcher uses Zenity to present dialog boxes to the

Bernardo Chrispim Baron 33 Dec 03, 2022
基于百度的语音识别,用python实现,pyaudio+pyqt

Speech-recognition 基于百度的语音识别,python3.8(conda)+pyaudio+pyqt+baidu-aip 百度有面向python

J-L 1 Jan 03, 2022
PIZZA - a task-oriented semantic parsing dataset

The PIZZA dataset continues the exploration of task-oriented parsing by introducing a new dataset for parsing pizza and drink orders, whose semantics cannot be captured by flat slots and intents.

17 Dec 14, 2022
Python utility library for compositing PDF documents with reportlab.

pdfdoc-py Python utility library for compositing PDF documents with reportlab. Installation The pdfdoc-py package can be installed directly from the s

Michael Gale 1 Jan 06, 2022
Meta learning algorithms to train cross-lingual NLI (multi-task) models

Meta learning algorithms to train cross-lingual NLI (multi-task) models

M.Hassan Mojab 4 Nov 20, 2022
Checking spelling of form elements

Checking spelling of form elements. You can check the source files of external workflows/reports and configuration files

СКБ Контур (команда 1с) 15 Sep 12, 2022
jiant is an NLP toolkit

jiant is an NLP toolkit The multitask and transfer learning toolkit for natural language processing research Why should I use jiant? jiant supports mu

ML² AT CILVR 1.5k Jan 04, 2023
Finally decent dictionaries based on Wiktionary for your beloved eBook reader.

eBook Reader Dictionaries Finally, decent dictionaries based on Wiktionary for your beloved eBook reader. Dictionaries Catalan 🚧 Ελληνικά (help welco

Mickaël Schoentgen 163 Dec 31, 2022
EMNLP'2021: Can Language Models be Biomedical Knowledge Bases?

BioLAMA BioLAMA is biomedical factual knowledge triples for probing biomedical LMs. The triples are collected and pre-processed from three sources: CT

DMIS Laboratory - Korea University 41 Nov 18, 2022
A Multilingual Latent Dirichlet Allocation (LDA) Pipeline with Stop Words Removal, n-gram features, and Inverse Stemming, in Python.

Multilingual Latent Dirichlet Allocation (LDA) Pipeline This project is for text clustering using the Latent Dirichlet Allocation (LDA) algorithm. It

Artifici Online Services inc. 74 Oct 07, 2022
Training code of Spatial Time Memory Network. Semi-supervised video object segmentation.

Training-code-of-STM This repository fully reproduces Space-Time Memory Networks Performance on Davis17 val set&Weights backbone training stage traini

haochen wang 128 Dec 11, 2022
A python script that will use hydra to get user and password to login to ssh, ftp, and telnet

Hydra-Auto-Hack A python script that will use hydra to get user and password to login to ssh, ftp, and telnet Project Description This python script w

2 Jan 16, 2022
숭실대학교 컴퓨터학부 전공종합설계프로젝트

✨ 시각장애인을 위한 버스도착 알림 장치 ✨ 👀 개요 현대 사회에서 대중교통 위치 정보를 이용하여 사람들이 간단하게 이용할 대중교통의 정보를 얻고 쉽게 대중교통을 이용할 수 있다. 해당 정보는 각종 어플리케이션과 대중교통 이용시설에서 위치 정보를 제공하고 있지만 시각

taegyun 3 Jan 25, 2022
Stand-alone language identification system

langid.py readme Introduction langid.py is a standalone Language Identification (LangID) tool. The design principles are as follows: Fast Pre-trained

2k Jan 04, 2023
PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation

StyleSpeech - PyTorch Implementation PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation. Status (2021.06.09

Keon Lee 142 Jan 06, 2023
HAN2HAN : Hangul Font Generation

HAN2HAN : Hangul Font Generation

Changwoo Lee 36 Dec 28, 2022
TTS is a library for advanced Text-to-Speech generation.

TTS is a library for advanced Text-to-Speech generation. It's built on the latest research, was designed to achieve the best trade-off among ease-of-training, speed and quality. TTS comes with pretra

Mozilla 6.5k Jan 08, 2023
Code for Emergent Translation in Multi-Agent Communication

Emergent Translation in Multi-Agent Communication PyTorch implementation of the models described in the paper Emergent Translation in Multi-Agent Comm

Facebook Research 75 Jul 15, 2022
Python library for parsing resumes using natural language processing and machine learning

CVParser Python library for parsing resumes using natural language processing and machine learning. Setup Installation on Linux and Mac OS Follow the

nafiu 0 Jul 29, 2021