Tutorial to pretrain & fine-tune a 🤗 Flax T5 model on a TPUv3-8 with GCP

Overview

Pretrain and Fine-tune a T5 model with Flax on GCP

This tutorial details how pretrain and fine-tune a FlaxT5 model from HuggingFace using a TPU VM available on Google Cloud.

While the code is only slightly adapted from the original HuggingFace examples for pretraining and seq2seq fine-tuning, this repository is aimed to provide a comprehensive overview for the whole process, with a special focus on pitfalls due to an incorrect environment setup.

Why JAX/Flax? Thanks to the amazing work of the HuggingFace team, a good portion of the models available in the transformers library are available in Flax, a neural network library built on top of JAX. Using Flax for pretraining on TPUs is especially convenient for two reasons:

  • TPUs are optimized for training deep models, and Flax is optimized for TPUs. A benchmark conducted by Huggingface showed that a BERT pretraining with Flax takes only 65% of the time needed with Pytorch/XLA to achieve comparable performances on a TPUv3-8 VM, and only 35% of the time if compared to Pytorch training on 8 V100 GPUs. Since language models are usually pretrained for days on massive amounts of text, the speedup is especially desirable here.

  • Out-of-the-box compatibility with Pytorch and Tensorflow in the transformers framework. A Flax model can be easily converted in Pytorch, for example, by using T5ForConditionalGeneration.from_pretrained("path/to/flax/ckpt", from_flax=True).

The code and instructions contained in this repository were used to pretrain the models gsarti/t5-base-it and gsarti/t5-large-it available on the Huggingface Hub, using ~270Gb of cleaned web-scraped Italian texts. The dataset is also made available on the Huggingface Hub under the name gsarti/clean_mc4_it.

Setup on your machine

Follow the instructions detailed in the Cloud SDK Install Guide to install the gcloud client on your system.

TPU VMs only have ~100Gb of disk space, which is highly unlikely to be enough to store your raw + preprocessed dataset and all model checkpoints. GCP gives a choice among different kind of disk types and limits the total disk space a user can create. At the time of writing this, for a non-free trial user in Europe without special access the limit is 250Gb for SSD (pd-balanced) and 2Tb overall, including SSD and HDD (pd-standard).

### Define your variables
export GCP_PROJECT="<YOUR_PROJECT_NAME>"
export GCP_ZONE="<YOUR_REGION>"
export GCP_TPU_NAME="<YOUR_TPU_NAME>"

# >>>>> Run this part to add a disk to your TPU VM
export GCP_DISK_NAME="<YOUR_DISK_NAME>"
export GCP_DISK_SIZE_GB=1200
export GCP_DISK_TYPE=pd-standard


gcloud beta compute disks create $GCP_DISK_NAME \
    --project=$GCP_PROJECT \
    --type=$GCP_DISK_TYPE \
    --size="${GCP_DISK_SIZE_GB}GB" \
    --zone=$GCP_ZONE
# <<<<<

# Create the TPU VM
gcloud alpha compute tpus tpu-vm create $GCP_TPU_NAME \
    --zone $GCP_ZONE \
    --project $GCP_PROJECT \
    --accelerator-type v3-8 \
    --version v2-alpha \
    # Uncomment this if a disk is used
    #--data-disk source="projects/${GCP_PROJECT}/zones/${GCP_ZONE}/disks/${GCP_DISK_NAME}" 

Inside the TPUv3-8 machine

Log in inside the machine with the following command:

gcloud alpha compute tpus tpu-vm ssh $GCP_TPU_NAME --zone $GCP_ZONE --project $GCP_PROJECT

The system is a classic Ubuntu 20.04 with some utility libraries already available (e.g. tmux, vim). The following commands show how to setup the disk inside the machine, if you created a disk. The disk in the example is available on /dev/sdb, and we mount it on the data folder in the home:

# Check that your disk is visible and get its name
lsblk
# Mount disk in the data folder
sudo mkfs.ext4 -m 0 -E lazy_itable_init=0,lazy_journal_init=0,discard /dev/sdb
sudo mkdir -p data
sudo mount -o discard,defaults /dev/sdb data
sudo chmod a+w data
# Optionally, add the automatic mounting: https://cloud.google.com/compute/docs/disks/add-persistent-disk#configuring_automatic_mounting_on_vm_restart

# Permanently export the disk as the new path for HF dataset caching
echo "export HF_DATASETS_CACHE=data" >> .bashrc
source .bashrc

We then setup the environment with required libraries and dependencies:

### Setup the TPUv3-8 environment
sudo apt update
sudo apt-get install python3.8-venv
python3 -m venv venv
source venv/bin/activate
pip install --upgrade pip
pip install "jax[tpu]>=0.2.16" -f https://storage.googleapis.com/jax-releases/libtpu_releases.html
pip install -r requirements.txt
sudo apt-get install git-lfs
git lfs install

The next step is to create a repository on the Huggingface Hub (here e.g. t5-base-it) that will contain all our files. We then train a tokenizer, select a config, and push the two JSON files in the repository we created.

Depending on the number of sentences that need to be processed, this may take quite some time (~2 hours for 10M sentences).

# Huggingface Hub variables
export HF_NAME="<YOUR_HF_HUB_USERNAME>"
export HF_PWD="<YOUR_HF_HUB_PASSWORD>"
export HF_TOKEN="<YOUR_HF_HUB_API_TOKEN>"
export HF_PROJECT="t5-base-it"

# Variables for training the tokenizer and creating the config
export VOCAB_SIZE="32000"
export N_INPUT_SENTENCES="1000000" # Num of sentences to train the tokenizer
export DATASET="gsarti/clean_mc4_it" # Name of the dataset in the Huggingface Hub
export DATASET_CONFIG="full" # Config of the dataset in the Huggingface Hub 
export DATASET_SPLIT="train" # Split to use for training tokenizer and model
export TEXT_FIELD="text" # Field containing the text to be used for training
export CONFIG_TYPE="google/t5-v1_1-base" # Config that our model will use
export MODEL_PATH="data/${HF_PROJECT}" # Path to the model, e.g. here inside the mount

### Setup the project on the HF Hub
#huggingface-cli login also works
echo $HF_TOKEN > ~/.huggingface/token
huggingface-cli repo create $HF_PROJECT
git clone "https://huggingface.co/${HF_NAME}/${HF_PROJECT}"
mv $HF_PROJECT $MODEL_PATH

# Create the tokenizer and the config
python create_tokenizer_cfg.py \
    --model_dir $MODEL_PATH \
    --dataset $DATASET \
    --dataset_config $DATASET_CONFIG \
    --dataset_split $DATASET_SPLIT \
    --text_field $TEXT_FIELD \
    --vocab_size $VOCAB_SIZE \
    --input_sentence_size $N_INPUT_SENTENCES \
    --config_type $CONFIG_TYPE

# Push the tokenizer and the config to the HF Hub
cd $MODEL_PATH
git lfs track "*tfevents*"
git add .
git commit -m "Added tokenizer and config"à
# If this doesn't work, do a normal push and insert your credentials
git push "https://huggingface.co/${HF_NAME}/${HF_NAME}:${HF_PWD}@${HF_PROJECT}"
cd ..

The last step is to run the pretraining. The following command will train the model on the same dataset used to train the tokenizer, logging train/eval metrics to Tensorboard and pushing model checkpoints and artifacts to the Hub every save_steps steps:

Important: Since checkpoints are stored with Git LFS on the Hub, depending on the number of save_steps you may encur in problems with space (e.g. training a model with 1Gb ckpts for 1M steps with save_steps=10_000 will need 100Gb of free space to avoid crashes during training). Two ways to avoid problems are:

  • Use save_steps > (tot_steps / your_available_memory) * ckpt_size_gb. E.g. if we are doing 1M steps and the ckpt_size is 1GB and we only have 76Gb free, we will need save_steps higher than 1M/76Gb ~= 13158. Failing to do so will result in an interruption of the training once the memory has been exceeded.

  • Use git lfs prune --verify-remote to periodically remove old cached checkpoints from .git/lfs/objects and free up some space. If done often enough this will prevent any problem of space, but requires manual intervention of the user.

# Run the training
# Adjust the parameters to your needs
# To avoid using an extra disk for storing the model, 
python run_t5_mlm_flax.py \
    --output_dir=$MODEL_PATH \
    --model_type="t5" \
    --config_name=$MODEL_PATH \
    --tokenizer_name=$MODEL_PATH \
    --preprocessing_num_workers="96" \
    --do_train --do_eval \
    --adafactor \
    --dataset_name="gsarti/clean_mc4_it" \
    --dataset_config_name="full" \
    --max_seq_length="512" \
    --per_device_train_batch_size="8" \
    --per_device_eval_batch_size="8" \
    --learning_rate="0.005" \
    --overwrite_output_dir \
    --num_train_epochs="1" \
    --logging_steps="500" \
    --save_steps="80000" \
    --eval_steps="2500" \
    --weight_decay="0.01" \
    --warmup_steps="10000" \
    --validation_split_count="15000" \
    --push_to_hub \
    #--gradient_accumulation_steps="2" # Uncomment to use gradient accumulation
    #--resume_from_checkpoint=$MODEL_PATH # Uncomment to resume from ckpt

Exporting Checkpoints

Your model is now trained, congratulations! 🎉 Now you may want to export your final Flax model to other frameworks. This can be done easily:

python export_checkpoint.py --model_dir $MODEL_PATH
cd $MODEL_PATH
git commit -m "Added TF and PT models"
git push

Fine-tune a pretrained T5 model in Flax

TODO

Useful Tips

About GCP Billing Except for TPU costs, which can be offset by taking part in the TRC program, the second highest billing voice is the uploading of files from the VM to another destination. This happens every save_step during training, to keep the Tensorboard and the checkpoint on the HF Hub in sync. For in-region uploads, at the time of writing this the cost is up to 0.12 USD per GB. This means that for a full pretraining of 1M steps with logging every 10k steps, with checkpoints of roughly 1GB each, the cost is roughly 12$USD. To reduce this cost simply increase the amount of save_steps in the run_t5_mlm_flax.py script.

About data preprocessing Imagine you've trained a base model and now you want to train a large variant, using the same tokenzer. Even if the tokenizer is the same, if the path of the tokenizer is changed the cache will be invalidated and everything will be recomputed. If this is the case, it's not a tragedy: some extra preprocessing time will be required. But mind that the tokenization + grouping take substantial space on disk, so if the space is not enough, you will need to delete the arrows from the previous HuggingFace dataset cache. You can easily do so with something like:

find . -type f -size +2G -size -4G -exec ls -lah {} + | grep 'Aug 25 13' | wc -l

As an example, knowing that my tokenization completed Aug 25 at 13:xx and that files in the cache are 3Gb in size each, this should return the value you set for n_proc. You can get the filenames of the old preprocessing caches by removing the wc -l pipe and delete them all to leave space for the new ones.

Owner
Gabriele Sarti
PhD Student in NLP @ University of Groningen | Prev: Aindo, ILC-CNR Pisa, Skytech Montreal
Gabriele Sarti
A2T: Towards Improving Adversarial Training of NLP Models (EMNLP 2021 Findings)

A2T: Towards Improving Adversarial Training of NLP Models This is the source code for the EMNLP 2021 (Findings) paper "Towards Improving Adversarial T

QData 17 Oct 15, 2022
A programming language with logic of Python, and syntax of all languages.

Pytov The idea was to take all well known syntaxes, and combine them into one programming language with many posabilities. Installation Install using

Yuval Rosen 14 Dec 07, 2022
VoiceFixer VoiceFixer is a framework for general speech restoration.

VoiceFixer VoiceFixer is a framework for general speech restoration. We aim at the restoration of severly degraded speech and historical speech. Paper

Leo 174 Jan 06, 2023
Built for cleaning purposes in military institutions

Ferramenta do AL Construído para fins de limpeza em instituições militares. Instalação Requer python = 3.2 pip install -r requirements.txt Usagem Exe

0 Aug 13, 2022
FB ID CLONER WUTHOT CHECKPOINT, FACEBOOK ID CLONE FROM FILE

* MY SOCIAL MEDIA : Programming And Memes Want to contact Mr. Error ? CONTACT : [ema

Mr. Error 9 Jun 17, 2021
TLA - Twitter Linguistic Analysis

TLA - Twitter Linguistic Analysis Tool for linguistic analysis of communities TLA is built using PyTorch, Transformers and several other State-of-the-

Tushar Sarkar 47 Aug 14, 2022
NLPShala , the best IDE for all Natural language processing tasks.

The revolutionary IDE for all NLP (Natural language processing) stuffs on the internet.

Abhi 3 Aug 08, 2021
Code for Text Prior Guided Scene Text Image Super-Resolution

Code for Text Prior Guided Scene Text Image Super-Resolution

82 Dec 26, 2022
neural network based speaker embedder

Content What is deepaudio-speaker? Installation Get Started Model Architecture How to contribute to deepaudio-speaker? Acknowledge What is deepaudio-s

20 Dec 29, 2022
Library for fast text representation and classification.

fastText fastText is a library for efficient learning of word representations and sentence classification. Table of contents Resources Models Suppleme

Facebook Research 24.1k Jan 05, 2023
Open-Source Toolkit for End-to-End Speech Recognition leveraging PyTorch-Lightning and Hydra.

OpenSpeech provides reference implementations of various ASR modeling papers and three languages recipe to perform tasks on automatic speech recogniti

Soohwan Kim 26 Dec 14, 2022
Задания КЕГЭ по информатике 2021 на Python

КЕГЭ 2021 на Python В этом репозитории мои решения типовых заданий КЕГЭ по информатике в 2021 году, БЕСПЛАТНО! Задания Взяты с https://inf-ege.sdamgia

8 Oct 13, 2022
pytorch implementation of Attention is all you need

A Pytorch Implementation of the Transformer: Attention Is All You Need Our implementation is largely based on Tensorflow implementation Requirements N

230 Dec 07, 2022
Sinkhorn Transformer - Practical implementation of Sparse Sinkhorn Attention

Sinkhorn Transformer This is a reproduction of the work outlined in Sparse Sinkhorn Attention, with additional enhancements. It includes a parameteriz

Phil Wang 217 Nov 25, 2022
多语言降噪预训练模型MBart的中文生成任务

mbart-chinese 基于mbart-large-cc25 的中文生成任务 Input source input: text + /s + lang_code target input: lang_code + text + /s Usage token_ids_mapping.jso

11 Sep 19, 2022
Using context-free grammar formalism to parse English sentences to determine their structure to help computer to better understand the meaning of the sentence.

Sentance Parser Executing the Program Make sure Python 3.6+ is installed. Install requirements $ pip install requirements.txt Run the program:

Vaibhaw 12 Sep 28, 2022
Implementation of COCO-LM, Correcting and Contrasting Text Sequences for Language Model Pretraining, in Pytorch

COCO LM Pretraining (wip) Implementation of COCO-LM, Correcting and Contrasting Text Sequences for Language Model Pretraining, in Pytorch. They were a

Phil Wang 44 Jul 28, 2022
[Preprint] Escaping the Big Data Paradigm with Compact Transformers, 2021

Compact Transformers Preprint Link: Escaping the Big Data Paradigm with Compact Transformers By Ali Hassani[1]*, Steven Walton[1]*, Nikhil Shah[1], Ab

SHI Lab 367 Dec 31, 2022
Code and data accompanying Natural Language Processing with PyTorch

Natural Language Processing with PyTorch Build Intelligent Language Applications Using Deep Learning By Delip Rao and Brian McMahan Welcome. This is a

Joostware 1.8k Jan 01, 2023
Rootski - Full codebase for rootski.io (without the data)

📣 Welcome to the Rootski codebase! This is the codebase for the application run

Eric 20 Nov 18, 2022