Dual languaged (rus+eng) tool for packing and unpacking archives of Silky Engine.

Overview

SilkyArcTool

English

Dual languaged (rus+eng) GUI tool for packing and unpacking archives of Silky Engine. It is not the same arc as used in Ai6WIN. If you want to work with Silky Engine's .mes scripts, use mesScriptAsseAndDisassembler instead.

Why this tool was created, if there are other tools that can work with this type of archive? The answer is simple: because there was no actually good enough tools. One tool can only extract the data, other -- only pack, but without using original compression, that resulting in outrageous big output archives. My tool solves all the issues -- not only it can extract archives, but also pack them from files, compressing it by algorithm (variation of LZSS), extraction of which was implemented by Silky Engine. Through the tool has one problem -- it works quite slow, especially for packing, so you may need to wait for some minutes (due to implementation compression algorithm on Python).

Русский

Двуязычное средство (рус+англ) для распаковки и запаковки архивов Silky Engine. Не стоит путать его с разновидностью .arc, используемой в Ai6WIN. Ежели вам нужно работать со скриптами .mes Silky Engine, используйте mesScriptAsseAndDisassembler.

Почему же это средство было создано, ежель и так есть средства, что могут работать с сим типом архива? Ответ прост: ни одно из тех существующих средств не является достаточно хорошим. Одно может только извлекать, другое -- только запаковывать, однако ж без использования оригинального алгоритма сжатия, из-за чего архивы получаются большими сверх всякой меры. Но моё средство исправляет эти проблемы: оно может как распаковывать данные, так и запаковывать их, причём сжимая файлы так, как их хочет видеть Silky Engine (разновидностью LZSS). Единственная, однако, проблема у средства есть -- несколько медленно работает оно, особенно при запаковке, так что может придётся прождать несколько минут (ввиду реализации алгоритма сжатия на Python).

Usage

English

image

  1. Run the tool (main.py or .exe).
  2. Print filename (with extension!!!) or choose it by clicking on button "...".
  3. Print directory or choose it by clicking on button "...".
  4. Print "0", if thou want to unpack, or "1", if thou want to pack.
  5. Just wait until it done.

Русский

image

  1. Запустите пакет средств (main.py иль .exe).
  2. Введите имя архива (с расширением!!!) или выберите его, нажав на кнопку "...".
  3. Введите имя директории файлов или выберите его, нажав на кнопку "...".
  4. Введите "0", коли распаковать желаете, али "1", коли запаковать желаете.
  5. Ждите завершения.

Tested on:

On English

На русском

You might also like...
Creating a chess engine using GPT-3
Creating a chess engine using GPT-3

GPT3Chess Creating a chess engine using GPT-3 Code for my article : https://towardsdatascience.com/gpt-3-play-chess-d123a96096a9 My game (white) vs GP

A simple command line tool for text to image generation, using OpenAI's CLIP and a BigGAN
A simple command line tool for text to image generation, using OpenAI's CLIP and a BigGAN

artificial intelligence cosmic love and attention fire in the sky a pyramid made of ice a lonely house in the woods marriage in the mountains lantern

A tool helps build a talk preview image by combining the given background image and talk event description

talk-preview-img-builder A tool helps build a talk preview image by combining the given background image and talk event description Installation and U

Phomber is infomation grathering tool that reverse search phone numbers and get their details, written in python3.
Phomber is infomation grathering tool that reverse search phone numbers and get their details, written in python3.

A Infomation Grathering tool that reverse search phone numbers and get their details ! What is phomber? Phomber is one of the best tools available fo

Tool which allow you to detect and translate text.
Tool which allow you to detect and translate text.

Text detection and recognition This repository contains tool which allow to detect region with text and translate it one by one. Description Two pretr

A unified tokenization tool for Images, Chinese and English.

ICE Tokenizer Token id [0, 20000) are image tokens. Token id [20000, 20100) are common tokens, mainly punctuations. E.g., icetk[20000] == 'unk', ice

Comments
  • Invalid argument

    Invalid argument

    I tried your tool with the .arc files of the game "[Silky's] Gakuen Saimin Reido -Sakki made, Daikirai Datta Hazu na no ni-" (学園催眠隷奴~さっきまで、大嫌いだったはずなのに~), but it keeps giving me this error:

    image

    opened by Nephiro 3
  • Extraction fails if archives are on other drive

    Extraction fails if archives are on other drive

    Exception in Tkinter callback
    Traceback (most recent call last):
      File "C:\Program Files\Python39\lib\tkinter\__init__.py", line 1892, in __call__
      File "C:\Users\Александр\Desktop\Tester\SilkyArcTool\gui.py", line 316, in _choose_file
      File "C:\Program Files\Python39\lib\ntpath.py", line 703, in relpath
    ValueError: path is on mount 'C:', start on mount 'Y:'
    Exception in Tkinter callback
    Traceback (most recent call last):
      File "C:\Program Files\Python39\lib\tkinter\__init__.py", line 1892, in __call__
      File "C:\Users\Александр\Desktop\Tester\SilkyArcTool\gui.py", line 316, in _choose_file
      File "C:\Program Files\Python39\lib\ntpath.py", line 703, in relpath
    ValueError: path is on mount 'C:', start on mount 'Y:'
    

    Simple fix is move archive to same drive as the tool

    opened by dobacco 2
Releases(1.1)
Owner
Tester
Tester Testerov Testerovich. "Test, test and test once more!"
Tester
This repo stores the codes for topic modeling on palliative care journals.

This repo stores the codes for topic modeling on palliative care journals. Data Preparation You first need to download the journal papers. bash 1_down

3 Dec 20, 2022
Negative sampling for solving the unlabeled entity problem in NER. ICLR-2021 paper: Empirical Analysis of Unlabeled Entity Problem in Named Entity Recognition.

Negative Sampling for NER Unlabeled entity problem is prevalent in many NER scenarios (e.g., weakly supervised NER). Our paper in ICLR-2021 proposes u

Yangming Li 128 Dec 29, 2022
SNCSE: Contrastive Learning for Unsupervised Sentence Embedding with Soft Negative Samples

SNCSE SNCSE: Contrastive Learning for Unsupervised Sentence Embedding with Soft Negative Samples This is the repository for SNCSE. SNCSE aims to allev

Sense-GVT 59 Jan 02, 2023
Code for EMNLP 2021 main conference paper "Text AutoAugment: Learning Compositional Augmentation Policy for Text Classification"

Code for EMNLP 2021 main conference paper "Text AutoAugment: Learning Compositional Augmentation Policy for Text Classification"

LancoPKU 105 Jan 03, 2023
中文无监督SimCSE Pytorch实现

A PyTorch implementation of unsupervised SimCSE SimCSE: Simple Contrastive Learning of Sentence Embeddings 1. 用法 无监督训练 python train_unsup.py ./data/ne

99 Dec 23, 2022
Fidibo.com comments Sentiment Analyser

Fidibo.com comments Sentiment Analyser Introduction This project first asynchronously grab Fidibo.com books comment data using grabber.py and then sav

Iman Kermani 3 Apr 15, 2022
This repository contains the code for running the character-level Sandwich Transformers from our ACL 2020 paper on Improving Transformer Models by Reordering their Sublayers.

Improving Transformer Models by Reordering their Sublayers This repository contains the code for running the character-level Sandwich Transformers fro

Ofir Press 53 Sep 26, 2022
Cải thiện Elasticsearch trong bài toán semantic search sử dụng phương pháp Sentence Embeddings

Cải thiện Elasticsearch trong bài toán semantic search sử dụng phương pháp Sentence Embeddings Trong bài viết này mình sẽ sử dụng pretrain model SimCS

Vo Van Phuc 18 Nov 25, 2022
Data preprocessing rosetta parser for python

datapreprocessing_rosetta_parser I've never done any NLP or text data processing before, so I wanted to use this hackathon as a learning opportunity,

ASReview hackathon for Follow the Money 2 Nov 28, 2021
Implementation of the Hybrid Perception Block and Dual-Pruned Self-Attention block from the ITTR paper for Image to Image Translation using Transformers

ITTR - Pytorch Implementation of the Hybrid Perception Block (HPB) and Dual-Pruned Self-Attention (DPSA) block from the ITTR paper for Image to Image

Phil Wang 17 Dec 23, 2022
Pipeline for chemical image-to-text competition

BMS-Molecular-Translation Introduction This is a pipeline for Bristol-Myers Squibb – Molecular Translation by Vadim Timakin and Maksim Zhdanov. We got

Maksim Zhdanov 7 Sep 20, 2022
Easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code.

textgenrnn Easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code, or quickly tr

Max Woolf 4.8k Dec 30, 2022
hashily is a Python module that provides a variety of text decoding and encoding operations.

hashily is a python module that performs a variety of text decoding and encoding functions. It also various functions for encrypting and decrypting text using various ciphers.

DevMysT 5 Jul 17, 2022
DELTA is a deep learning based natural language and speech processing platform.

DELTA - A DEep learning Language Technology plAtform What is DELTA? DELTA is a deep learning based end-to-end natural language and speech processing p

DELTA 1.5k Dec 26, 2022
TLA - Twitter Linguistic Analysis

TLA - Twitter Linguistic Analysis Tool for linguistic analysis of communities TLA is built using PyTorch, Transformers and several other State-of-the-

Tushar Sarkar 47 Aug 14, 2022
A Pytorch implementation of "Splitter: Learning Node Representations that Capture Multiple Social Contexts" (WWW 2019).

Splitter ⠀⠀ A PyTorch implementation of Splitter: Learning Node Representations that Capture Multiple Social Contexts (WWW 2019). Abstract Recent inte

Benedek Rozemberczki 201 Nov 09, 2022
Code for CodeT5: a new code-aware pre-trained encoder-decoder model.

CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and Generation This is the official PyTorch implementation

Salesforce 564 Jan 08, 2023
Implementation of legal QA system based on SentenceKoBART

LegalQA using SentenceKoBART Implementation of legal QA system based on SentenceKoBART How to train SentenceKoBART Based on Neural Search Engine Jina

Heewon Jeon(gogamza) 75 Dec 27, 2022
⚡ Automatically decrypt encryptions without knowing the key or cipher, decode encodings, and crack hashes ⚡

Translations 🇩🇪 DE 🇫🇷 FR 🇭🇺 HU 🇮🇩 ID 🇮🇹 IT 🇳🇱 NL 🇧🇷 PT-BR 🇷🇺 RU 🇨🇳 ZH ➡️ Documentation | Discord | Installation Guide ⬅️ Fully autom

11.2k Jan 05, 2023
Incorporating KenLM language model with HuggingFace implementation of Wav2Vec2CTC Model using beam search decoding

Wav2Vec2CTC With KenLM Using KenLM ARPA language model with beam search to decode audio files and show the most probable transcription. Assuming you'v

farisalasmary 65 Sep 21, 2022