A2T: Towards Improving Adversarial Training of NLP Models (EMNLP 2021 Findings)

Overview

A2T: Towards Improving Adversarial Training of NLP Models

This is the source code for the EMNLP 2021 (Findings) paper "Towards Improving Adversarial Training of NLP Models".

If you use the code, please cite the paper:

@misc{yoo2021improving,
      title={Towards Improving Adversarial Training of NLP Models}, 
      author={Jin Yong Yoo and Yanjun Qi},
      year={2021},
      eprint={2109.00544},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

Prerequisites

The work heavily relies on the TextAttack package. In fact, the main training code is implemented in the TextAttack package.

Required packages are listed in the requirements.txt file.

pip install -r requirements.txt

Data

All of the data used for the paper are available from HuggingFace's Datasets.

For IMDB and Yelp datasets, because there are no official validation splits, we randomly sampled 5k and 10k, respectively, from the training set and used them as valid splits. We provide the splits in this Google Drive folder. To use them with the provided code, place each folder (e.g. imdb, yelp, augmented_data) inside ./data (run mkdir data).

Also, augmented training data generated using SSMBA and back-translation are available in the same folder.

Training

To train BERT model on IMDB dataset with A2T attack for 4 epochs and 1 clean epoch with gamma of 0.2:

python train.py \
    --train imdb \
    --eval imdb \
    --model-type bert \
    --model-save-path ./example \
    --num-epochs 4 \
    --num-clean-epochs 1 \
    --num-adv-examples 0.2 \
    --attack-epoch-interval 1 \
    --attack a2t \
    --learning-rate 5e-5 \
    --num-warmup-steps 100 \
    --grad-accumu-steps 1 \
    --checkpoint-interval-epochs 1 \
    --seed 42

You can also pass roberta to train RoBERTa model instead of BERT model. To select other datasets from the paper, pass rt (MR), yelp, or snli for --train and --eval.

This script is actually just to run the Trainer class from the TextAttack package. To checkout how training is performed, please checkout the Trainer class.

Evaluation

To evalute the accuracy, robustness, and interpretability of our trained model from above, run

python evaluate.py \
    --dataset imdb \
    --model-type bert \
    --checkpoint-paths ./example_run \
    --epoch 4 \
    --save-log \
    --accuracy \
    --robustness \
    --attacks a2t a2t_mlm textfooler bae pwws pso \
    --interpretability 

This takes the last checkpoint model (--epoch 4) and evaluates its accuracy on both IMDB and Yelp dataset (for cross-domain accuracy). It also evalutes the model's robustness against A2T, A2T-MLM, TextFooler, BAE, PWWS, and PSO attacks. Lastly, with the --interpretability flag, AOPC scores are calculated.

Note that you will have to run --robustness and --interpretability with --accuracy (or after you separately evaluate accuracy) since both robustness and intepretability evaluations rely on the accuracy evaluation to know which samples the model was able to predict correctly. By default 1000 samples are attacked to evaluate robustness. Likewise, 1000 samples are used to calculate AOPC score for interpretability.

If you're evaluating multiple models for comparison, it's also advised that you provide all the checkpoint paths together to --checkpoint-paths. This is because the samples that are correctly by each model will be different, so we first need to identify the intersection of the all correct predictions before using them to evaluate robustness for all the models. This will allow fairer comparison of models' robustness rather than using attack different samples for each model.

Data Augmentation

Lastly, we also provide augment.py which we used to perform data augmentation methods such as SSMBA and back-translation.

Following is an example command for augmenting imdb dataset with SSMBA method.

python augment.py \
    --dataset imdb \
    --augmentation ssmba \
    --output-path ./augmented_data \
    --seed 42 

You can also pass backtranslation to --augmentation.

Owner
QData
http://www.cs.virginia.edu/yanjun/
QData
结巴中文分词

jieba “结巴”中文分词:做最好的 Python 中文分词组件 "Jieba" (Chinese for "to stutter") Chinese text segmentation: built to be the best Python Chinese word segmentation

Sun Junyi 29.8k Jan 02, 2023
Pipeline for chemical image-to-text competition

BMS-Molecular-Translation Introduction This is a pipeline for Bristol-Myers Squibb – Molecular Translation by Vadim Timakin and Maksim Zhdanov. We got

Maksim Zhdanov 7 Sep 20, 2022
Speach Recognitions

easy_meeting Добро пожаловать в интерфейс сервиса автопротоколирования совещаний Easy Meeting. Website - http://cf5c-62-192-251-83.ngrok.io/ Принципиа

Maksim 3 Feb 18, 2022
scikit-learn wrappers for Python fastText.

skift scikit-learn wrappers for Python fastText. from skift import FirstColFtClassifier df = pandas.DataFrame([['woof', 0], ['meow', 1]], colu

Shay Palachy 233 Sep 09, 2022
Natural Language Processing for Adverse Drug Reaction (ADR) Detection

Natural Language Processing for Adverse Drug Reaction (ADR) Detection This repo contains code from a project to identify ADRs in discharge summaries a

Medicines Optimisation Service - Austin Health 21 Aug 05, 2022
Extracting Summary Knowledge Graphs from Long Documents

GraphSum This repo contains the data and code for the G2G model in the paper: Extracting Summary Knowledge Graphs from Long Documents. The other basel

Zeqiu (Ellen) Wu 10 Oct 21, 2022
Deeply Supervised, Layer-wise Prediction-aware (DSLP) Transformer for Non-autoregressive Neural Machine Translation

Non-Autoregressive Translation with Layer-Wise Prediction and Deep Supervision Training Efficiency We show the training efficiency of our DSLP model b

Chenyang Huang 37 Jan 04, 2023
本项目是作者们根据个人面试和经验总结出的自然语言处理(NLP)面试准备的学习笔记与资料,该资料目前包含 自然语言处理各领域的 面试题积累。

【关于 NLP】那些你不知道的事 作者:杨夕、芙蕖、李玲、陈海顺、twilight、LeoLRH、JimmyDU、艾春辉、张永泰、金金金 介绍 本项目是作者们根据个人面试和经验总结出的自然语言处理(NLP)面试准备的学习笔记与资料,该资料目前包含 自然语言处理各领域的 面试题积累。 目录架构 一、【

1.4k Dec 30, 2022
A minimal code for fairseq vq-wav2vec model inference.

vq-wav2vec inference A minimal code for fairseq vq-wav2vec model inference. Runs without installing the fairseq toolkit and its dependencies. Usage ex

Vladimir Larin 7 Nov 15, 2022
Research code for ECCV 2020 paper "UNITER: UNiversal Image-TExt Representation Learning"

UNITER: UNiversal Image-TExt Representation Learning This is the official repository of UNITER (ECCV 2020). This repository currently supports finetun

Yen-Chun Chen 680 Dec 24, 2022
Implementation of Token Shift GPT - An autoregressive model that solely relies on shifting the sequence space for mixing

Token Shift GPT Implementation of Token Shift GPT - An autoregressive model that relies solely on shifting along the sequence dimension and feedforwar

Phil Wang 32 Oct 14, 2022
Nystromformer: A Nystrom-based Algorithm for Approximating Self-Attention

Nystromformer: A Nystrom-based Algorithm for Approximating Self-Attention April 6, 2021 We extended segment-means to compute landmarks without requiri

Zhanpeng Zeng 322 Jan 01, 2023
CDLA: A Chinese document layout analysis (CDLA) dataset

CDLA: A Chinese document layout analysis (CDLA) dataset 介绍 CDLA是一个中文文档版面分析数据集,面向中文文献类(论文)场景。包含以下10个label: 正文 标题 图片 图片标题 表格 表格标题 页眉 页脚 注释 公式 Text Title

buptlihang 84 Dec 28, 2022
CJK computer science terms comparison / 中日韓電腦科學術語對照 / 日中韓のコンピュータ科学の用語対照 / 한·중·일 전산학 용어 대조

CJK computer science terms comparison This repository contains the source code of the website. You can see the website from the following link: Englis

Hong Minhee (洪 民憙) 88 Dec 23, 2022
NL. The natural language programming language.

NL A Natural-Language programming language. Built using Codex. A few examples are inside the nl_projects directory. How it works Write any code in pur

2 Jan 17, 2022
中文問句產生器;使用台達電閱讀理解資料集(DRCD)

Transformer QG on DRCD The inputs of the model refers to we integrate C and A into a new C' in the following form. C' = [c1, c2, ..., [HL], a1, ..., a

Philip 1 Oct 22, 2021
AudioCLIP Extending CLIP to Image, Text and Audio

AudioCLIP Extending CLIP to Image, Text and Audio This repository contains implementation of the models described in the paper arXiv:2106.13043. This

458 Jan 02, 2023
Facebook AI Research Sequence-to-Sequence Toolkit written in Python.

Fairseq(-py) is a sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization, language mod

20.5k Jan 08, 2023
PyTorch implementation of Tacotron speech synthesis model.

tacotron_pytorch PyTorch implementation of Tacotron speech synthesis model. Inspired from keithito/tacotron. Currently not as much good speech quality

Ryuichi Yamamoto 279 Dec 09, 2022
Simple program that translates the name of files into English

Simple program that translates the name of files into English. Useful for when editing/inspecting programs that were developed in a foreign language.

0 Dec 22, 2021