PyTorch source code of NAACL 2019 paper "An Embarrassingly Simple Approach for Transfer Learning from Pretrained Language Models"

Related tags

Text Data & NLPsiatl
Overview

This repository contains source code for NAACL 2019 paper "An Embarrassingly Simple Approach for Transfer Learning from Pretrained Language Models" (Paper link)

Introduction

This paper presents a simple transfer learning approach that addresses the problem of catastrophic forgetting. We pretrain a language model and then transfer it to a new model, to which we add a recurrent layer and an attention mechanism. Based on multi-task learning, we use a weighted sum of losses (language model loss and classification loss) and fine-tune the pretrained model on our (classification) task.

Architecture

Step 1:

  • Pretraining of a word-level LSTM-based language model

Step 2:

  • Fine-tuning the language model (LM) on a classification task

  • Use of an auxiliary LM loss

  • Employing 2 different optimizers (1 for the pretrained part and 1 for the newly added part)

  • Sequentially unfreezing

Reference

@inproceedings{chronopoulou-etal-2019-embarrassingly,
    title = "An Embarrassingly Simple Approach for Transfer Learning from Pretrained Language Models",
    author = "Chronopoulou, Alexandra  and
      Baziotis, Christos  and
      Potamianos, Alexandros",
    booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)",
    month = jun,
    year = "2019",
    address = "Minneapolis, Minnesota",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/N19-1213",
    pages = "2089--2095",
}

Prerequisites

Dependencies

  • PyTorch version >=0.4.0

  • Python version >= 3.6

Install Requirements

Create Environment (Optional): Ideally, you should create a conda environment for the project.

conda create -n siatl python=3
conda activate siatl

Install PyTorch 0.4.0 with the desired cuda version to use the GPU:

conda install pytorch==0.4.0 torchvision -c pytorch

Then install the rest of the requirements:

pip install -r requirements.txt

Download Data

You can find Sarcasm Corpus V2 (link) under datasets/

Plot visualization

Visdom is used to visualized metrics during training. You should start the server through the command line (using tmux or screen) by typing visdom. You will be then able to see the visualizations by going to http://localhost:8097 in your browser.

Check here for more: https://github.com/facebookresearch/visdom#usage

Training

In order to train the model, either the LM or the SiATL, you need to run the corresponding python script and pass as an argument a yaml model config. The yaml config specifies all the configuration details of the experiment to be conducted. To make any changes to a model, change an existing or create a new yaml config file.

The yaml config files can be found under model_configs/ directory.

Use the pretrained Language Model:

cd checkpoints/
wget https://www.dropbox.com/s/lalizxf3qs4qd3a/lm20m_70K.pt 

(Download it and place it in checkpoints/ directory)

(Optional) Train a Language Model:

Assuming you have placed the training and validation data under datasets/<name_of_your_corpus/train.txt, datasets/<name_of_your_corpus/valid.txt (check the model_configs/lm_20m_word.yaml's data section), you can train a LM.

See for example:

python models/sent_lm.py -i lm_20m_word.yaml

Fine-tune the Language Model on the labeled dataset, using an auxiliary LM loss, 2 optimizers and sequential unfreezing, as described in the paper:

To fine-tune it on the Sarcasm Corpus V2 dataset:

python models/run_clf.py -i SCV2_aux_ft_gu.yaml --aux_loss --transfer

  • -i: Configuration yaml file (under model_configs/)
  • --aux_loss: You can choose if you want to use an auxiliary LM loss
  • --transfer: You can choose if you want to use a pretrained LM to initalize the embedding and hidden layer of your model. If not, they will be randomly initialized
Owner
Alexandra Chronopoulou
Research Intern at AllenAI. CS PhD student in LMU Munich.
Alexandra Chronopoulou
:mag: Transformers at scale for question answering & neural search. Using NLP via a modular Retriever-Reader-Pipeline. Supporting DPR, Elasticsearch, HuggingFace's Modelhub...

Haystack is an end-to-end framework that enables you to build powerful and production-ready pipelines for different search use cases. Whether you want

deepset 6.4k Jan 09, 2023
:hot_pepper: R²SQL: "Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing." (AAAI 2021)

R²SQL The PyTorch implementation of paper Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing. (AAAI 2021) Requirement

huybery 60 Dec 31, 2022
Prithivida 690 Jan 04, 2023
Rootski - Full codebase for rootski.io (without the data)

📣 Welcome to the Rootski codebase! This is the codebase for the application run

Eric 20 Nov 18, 2022
Help you discover excellent English projects and get rid of disturbing by other spoken language

GitHub English Top Charts 「Help you discover excellent English projects and get

GrowingGit 544 Jan 09, 2023
NeMo: a toolkit for conversational AI

NVIDIA NeMo Introduction NeMo is a toolkit for creating Conversational AI applications. NeMo product page. Introductory video. The toolkit comes with

NVIDIA Corporation 5.3k Jan 04, 2023
Checking spelling of form elements

Checking spelling of form elements. You can check the source files of external workflows/reports and configuration files

СКБ Контур (команда 1с) 15 Sep 12, 2022
xFormers is a modular and field agnostic library to flexibly generate transformer architectures by interoperable and optimized building blocks.

Description xFormers is a modular and field agnostic library to flexibly generate transformer architectures by interoperable and optimized building bl

Facebook Research 2.3k Jan 08, 2023
A fast Text-to-Speech (TTS) model. Work well for English, Mandarin/Chinese, Japanese, Korean, Russian and Tibetan (so far). 快速语音合成模型,适用于英语、普通话/中文、日语、韩语、俄语和藏语(当前已测试)。

简体中文 | English 并行语音合成 [TOC] 新进展 2021/04/20 合并 wavegan 分支到 main 主分支,删除 wavegan 分支! 2021/04/13 创建 encoder 分支用于开发语音风格迁移模块! 2021/04/13 softdtw 分支 支持使用 Sof

Atomicoo 161 Dec 19, 2022
Python api wrapper for JellyFish Lights

Python api wrapper for JellyFish Lights The hope is to make this a pip installable package Current capabalilities: Connects to a local JellyFish Light

10 Dec 18, 2022
Creating a Feed of MISP Events from ThreatFox (by abuse.ch)

ThreatFox2Misp Creating a Feed of MISP Events from ThreatFox (by abuse.ch) What will it do? This will fetch IOCs from ThreatFox by Abuse.ch, convert t

17 Nov 22, 2022
An end to end ASR Transformer model training repo

END TO END ASR TRANSFORMER 本项目基于transformer 6*encoder+6*decoder的基本结构构造的端到端的语音识别系统 Model Instructions 1.数据准备: 自行下载数据,遵循文件结构如下: ├── data │ ├── train │

旷视天元 MegEngine 10 Jul 19, 2022
Text Classification Using LSTM

Text classification is the task of assigning a set of predefined categories to free text. Text classifiers can be used to organize, structure, and categorize pretty much anything. For example, new ar

KrishArul26 3 Jan 03, 2023
novel deep learning research works with PaddlePaddle

Research 发布基于飞桨的前沿研究工作,包括CV、NLP、KG、STDM等领域的顶会论文和比赛冠军模型。 目录 计算机视觉(Computer Vision) 自然语言处理(Natrual Language Processing) 知识图谱(Knowledge Graph) 时空数据挖掘(Spa

1.5k Jan 03, 2023
Auto translate textbox from Japanese to English or Indonesia

priconne-auto-translate Auto translate textbox from Japanese to English or Indonesia How to use Install python first, Anaconda is recommended Install

Aji Priyo Wibowo 5 Aug 25, 2022
Leon is an open-source personal assistant who can live on your server.

Leon Your open-source personal assistant. Website :: Documentation :: Roadmap :: Contributing :: Story 👋 Introduction Leon is an open-source personal

Leon AI 11.7k Dec 30, 2022
jiant is an NLP toolkit

jiant is an NLP toolkit The multitask and transfer learning toolkit for natural language processing research Why should I use jiant? jiant supports mu

ML² AT CILVR 1.5k Jan 04, 2023
Turn clang-tidy warnings and fixes to comments in your pull request

clang-tidy pull request comments A GitHub Action to post clang-tidy warnings and suggestions as review comments on your pull request. What platisd/cla

Dimitris Platis 30 Dec 13, 2022
Label data using HuggingFace's transformers and automatically get a prediction service

Label Studio for Hugging Face's Transformers Website • Docs • Twitter • Join Slack Community Transfer learning for NLP models by annotating your textu

Heartex 135 Dec 29, 2022
scikit-learn wrappers for Python fastText.

skift scikit-learn wrappers for Python fastText. from skift import FirstColFtClassifier df = pandas.DataFrame([['woof', 0], ['meow', 1]], colu

Shay Palachy 233 Sep 09, 2022