Associated Repository for "Translation between Molecules and Natural Language"

Related tags

Text Data & NLPMolT5
Overview

MolT5: Translation between Molecules and Natural Language

Associated repository for "Translation between Molecules and Natural Language".

Table of Contents

HuggingFace model checkpoints

All of our HuggingFace checkpoints are located here.

Pretrained MolT5-based checkpoints include:

You can also easily find our fine-tuned caption2smiles and smiles2caption models. For example, molt5-large-smiles2caption is a molt5-large model that has been further fine-tuned for the task of molecule captioning (i.e., smiles2caption).

Example usage for molecule captioning (i.e., smiles2caption):

from transformers import T5Tokenizer, T5ForConditionalGeneration

tokenizer = T5Tokenizer.from_pretrained("laituan245/molt5-large-smiles2caption", model_max_length=512)
model = T5ForConditionalGeneration.from_pretrained('laituan245/molt5-large-smiles2caption')

input_text = 'C1=CC2=C(C(=C1)[O-])NC(=CC2=O)C(=O)O'
input_ids = tokenizer(input_text, return_tensors="pt").input_ids

outputs = model.generate(input_ids, num_beams=5, max_length=512)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

Example usage for molecule generation (i.e., caption2smiles):

from transformers import T5Tokenizer, T5ForConditionalGeneration

tokenizer = T5Tokenizer.from_pretrained("laituan245/molt5-large-caption2smiles", model_max_length=512)
model = T5ForConditionalGeneration.from_pretrained('laituan245/molt5-large-caption2smiles')

input_text = 'The molecule is a monomethoxybenzene that is 2-methoxyphenol substituted by a hydroxymethyl group at position 4. It has a role as a plant metabolite. It is a member of guaiacols and a member of benzyl alcohols.'
input_ids = tokenizer(input_text, return_tensors="pt").input_ids

outputs = model.generate(input_ids, num_beams=5, max_length=512)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

T5X-based model checkpoints

Pretraining (MolT5-based models)

We used the open-sourced t5x framework for pretraining MolT5-based models.

For pre-training MolT5-based models, please first go over this document. In our work, our pretraining task is a mixture of c4_v220_span_corruption and also our own task called zinc_span_corruption. The pretraining mixture is called zinc_and_c4_mix. The code snippet below illustrates how to define zinc_and_c4_mix (e.g., you can just add this code snippet to tasks.py). Our Gin config files for pretraining are located in configs/pretrain. Data files can be downloaded from here.

...
import tensorflow.compat.v2 as tf
...
seqio.TaskRegistry.add(
    'zinc_span_corruption',
    source=seqio.TFExampleDataSource(
        split_to_filepattern={
            'test': # Path to zinc_smiles_test.tfrecords,
            'validation': # Path to zinc_smiles_val.tfrecords,
            'train': # Path to zinc_smiles_train.tfrecords,
        },
        feature_description={
            'text': tf.io.FixedLenFeature([], dtype=tf.string),
        }),
    preprocessors=[
        functools.partial(
            preprocessors.rekey, key_map={
                'inputs': None,
                'targets': 'text'
            }),
        seqio.preprocessors.tokenize,
        preprocessors.span_corruption,
        seqio.preprocessors.append_eos_after_trim,
    ],
    output_features=DEFAULT_OUTPUT_FEATURES,
    metric_fns=[])

seqio.MixtureRegistry.add('zinc_and_c4_mix', [('zinc_span_corruption', 1),
                                              ('c4_v220_span_corruption', 1)])
)

Finetuning (MolT5-based models)

We also used the t5x framework for finetuning MolT5-based models. Please first go over this document. Our Gin config files for finetuning are located in configs/finetune. For each of the Gin file, you need to set the INITIAL_CHECKPOINT_PATH variables (please use one of the checkpoints mentioned in this section). Note that there are two new tasks, which are named caption2smiles and smiles2caption. The code snippet below illustrates how to define the tasks. Data files can be downloaded from here.

...
# Metrics
_TASK_EVAL_METRICS_FNS = [
    metrics.bleu,
    metrics.rouge,
    metrics.sequence_accuracy
]

# Data Source
DATA_SOURCE = seqio.TFExampleDataSource(
    split_to_filepattern={
        'train': # Path to chebi_20_train.tfrecords,
        'validation': # Path to chebi_20_dev.tfrecords,
        'test': # Path to chebi_20_test.tfrecords
    },
    feature_description={
        'caption': tf.io.FixedLenFeature([], dtype=tf.string),
        'smiles': tf.io.FixedLenFeature([], dtype=tf.string),
        'cid': tf.io.FixedLenFeature([], dtype=tf.string),
    }
)

# Molecular Captioning (smiles2caption)
seqio.TaskRegistry.add(
    'smiles2caption',
    source=DATA_SOURCE,
    preprocessors=[
        functools.partial(
            preprocessors.rekey,
            key_map={
                'inputs': 'smiles',
                'targets': 'caption'
            }),
        seqio.preprocessors.tokenize,
        seqio.preprocessors.append_eos_after_trim,
    ],
    output_features=DEFAULT_OUTPUT_FEATURES,
    metric_fns=_TASK_EVAL_METRICS_FNS,
)

# Molecular Captioning (caption2smiles)
seqio.TaskRegistry.add(
    'caption2smiles',
    source=DATA_SOURCE,
    preprocessors=[
        functools.partial(
            preprocessors.rekey,
            key_map={
                'inputs': 'caption',
                'targets': 'smiles'
            }),
        seqio.preprocessors.tokenize,
        seqio.preprocessors.append_eos_after_trim,
    ],
    output_features=DEFAULT_OUTPUT_FEATURES,
    metric_fns=_TASK_EVAL_METRICS_FNS,
)

Datasets

Citation

If you found our work useful, please cite:

@article{edwards2022translation,
  title={Translation between Molecules and Natural Language},
  author={Edwards, Carl and Lai, Tuan and Ros, Kevin and Honke, Garrett and Ji, Heng},
  journal={arXiv preprint arXiv:2204.11817},
  year={2022}
}
A repo for open resources & information for people to succeed in PhD in CS & career in AI / NLP

A repo for open resources & information for people to succeed in PhD in CS & career in AI / NLP

420 Dec 28, 2022
Code for the paper "VisualBERT: A Simple and Performant Baseline for Vision and Language"

This repository contains code for the following two papers: VisualBERT: A Simple and Performant Baseline for Vision and Language (arxiv) with a short

Natural Language Processing @UCLA 464 Jan 04, 2023
RecipeReduce: Simplified Recipe Processing for Lazy Programmers

RecipeReduce This repo will help you figure out the amount of ingredients to buy for a certain number of meals with selected recipes. RecipeReduce Get

Qibin Chen 9 Apr 22, 2022
PocketSphinx is a lightweight speech recognition engine, specifically tuned for handheld and mobile devices, though it works equally well on the desktop

molten A minimal, extensible, fast and productive API framework for Python 3. Changelog: https://moltenframework.com/changelog.html Community: https:/

3.2k Dec 28, 2022
Traditional Chinese Text Recognition Dataset: Synthetic Dataset and Labeled Data

Traditional Chinese Text Recognition Dataset: Synthetic Dataset and Labeled Data Authors: Yi-Chang Chen, Yu-Chuan Chang, Yen-Cheng Chang and Yi-Ren Ye

Yi-Chang Chen 5 Dec 15, 2022
translate using your voice

speech-to-text-translator Usage translate using your voice description this project makes translating a word easy, all you have to do is speak and...

1 Oct 18, 2021
A simple version of DeTR

DeTR-Lite A simple version of DeTR Before you enjoy this DeTR-Lite The purpose of this project is to allow you to learn the basic knowledge of DeTR. P

Jianhua Yang 11 Jun 13, 2022
Shared code for training sentence embeddings with Flax / JAX

flax-sentence-embeddings This repository will be used to share code for the Flax / JAX community event to train sentence embeddings on 1B+ training pa

Nils Reimers 23 Dec 30, 2022
Perform sentiment analysis on textual data that people generally post on websites like social networks and movie review sites.

Sentiment Analyzer The goal of this project is to perform sentiment analysis on textual data that people generally post on websites like social networ

Madhusudan.C.S 53 Mar 01, 2022
AudioCLIP Extending CLIP to Image, Text and Audio

AudioCLIP Extending CLIP to Image, Text and Audio This repository contains implementation of the models described in the paper arXiv:2106.13043. This

458 Jan 02, 2023
AllenNLP integration for Shiba: Japanese CANINE model

Allennlp Integration for Shiba allennlp-shiab-model is a Python library that provides AllenNLP integration for shiba-model. SHIBA is an approximate re

Shunsuke KITADA 12 Feb 16, 2022
A notebook that shows how to import the IITB English-Hindi Parallel Corpus from the HuggingFace datasets repository

We provide a notebook that shows how to import the IITB English-Hindi Parallel Corpus from the HuggingFace datasets repository. The notebook also shows how to segment the corpus using BPE tokenizatio

Computation for Indian Language Technology (CFILT) 9 Oct 13, 2022
Unofficial PyTorch implementation of Google AI's VoiceFilter system

VoiceFilter Note from Seung-won (2020.10.25) Hi everyone! It's Seung-won from MINDs Lab, Inc. It's been a long time since I've released this open-sour

MINDs Lab 881 Jan 03, 2023
Implementation of Multistream Transformers in Pytorch

Multistream Transformers Implementation of Multistream Transformers in Pytorch. This repository deviates slightly from the paper, where instead of usi

Phil Wang 47 Jul 26, 2022
OceanScript is an Esoteric language used to encode and decode text into a formulation of characters

OceanScript is an Esoteric language used to encode and decode text into a formulation of characters - where the final result looks like waves in the ocean.

Yodatranslator is a simple translator English to Yoda-language

yodatranslator Overview yodatranslator is a simple translator English to Yoda-language. Project is created for educational purposes. It is intended to

1 Nov 11, 2021
This repository contains Python scripts for extracting linguistic features from Filipino texts.

Filipino Text Linguistic Feature Extractors This repository contains scripts for extracting linguistic features from Filipino texts. The scripts were

Joseph Imperial 1 Oct 05, 2021
Crie tokens de autenticação íntegros e seguros com UToken.

UToken - Tokens seguros. UToken (ou Unhandleable Token) é uma bilioteca criada para ser utilizada na geração de tokens seguros e íntegros, ou seja, nã

Jaedson Silva 0 Nov 29, 2022
Web mining module for Python, with tools for scraping, natural language processing, machine learning, network analysis and visualization.

Pattern Pattern is a web mining module for Python. It has tools for: Data Mining: web services (Google, Twitter, Wikipedia), web crawler, HTML DOM par

Computational Linguistics Research Group 8.4k Dec 30, 2022
Chinese Grammatical Error Diagnosis

nlp-CGED Chinese Grammatical Error Diagnosis 中文语法纠错研究 基于序列标注的方法 所需环境 Python==3.6 tensorflow==1.14.0 keras==2.3.1 bert4keras==0.10.6 笔者使用了开源的bert4keras

12 Nov 25, 2022