Associated Repository for "Translation between Molecules and Natural Language"

Related tags

Text Data & NLPMolT5
Overview

MolT5: Translation between Molecules and Natural Language

Associated repository for "Translation between Molecules and Natural Language".

Table of Contents

HuggingFace model checkpoints

All of our HuggingFace checkpoints are located here.

Pretrained MolT5-based checkpoints include:

You can also easily find our fine-tuned caption2smiles and smiles2caption models. For example, molt5-large-smiles2caption is a molt5-large model that has been further fine-tuned for the task of molecule captioning (i.e., smiles2caption).

Example usage for molecule captioning (i.e., smiles2caption):

from transformers import T5Tokenizer, T5ForConditionalGeneration

tokenizer = T5Tokenizer.from_pretrained("laituan245/molt5-large-smiles2caption", model_max_length=512)
model = T5ForConditionalGeneration.from_pretrained('laituan245/molt5-large-smiles2caption')

input_text = 'C1=CC2=C(C(=C1)[O-])NC(=CC2=O)C(=O)O'
input_ids = tokenizer(input_text, return_tensors="pt").input_ids

outputs = model.generate(input_ids, num_beams=5, max_length=512)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

Example usage for molecule generation (i.e., caption2smiles):

from transformers import T5Tokenizer, T5ForConditionalGeneration

tokenizer = T5Tokenizer.from_pretrained("laituan245/molt5-large-caption2smiles", model_max_length=512)
model = T5ForConditionalGeneration.from_pretrained('laituan245/molt5-large-caption2smiles')

input_text = 'The molecule is a monomethoxybenzene that is 2-methoxyphenol substituted by a hydroxymethyl group at position 4. It has a role as a plant metabolite. It is a member of guaiacols and a member of benzyl alcohols.'
input_ids = tokenizer(input_text, return_tensors="pt").input_ids

outputs = model.generate(input_ids, num_beams=5, max_length=512)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

T5X-based model checkpoints

Pretraining (MolT5-based models)

We used the open-sourced t5x framework for pretraining MolT5-based models.

For pre-training MolT5-based models, please first go over this document. In our work, our pretraining task is a mixture of c4_v220_span_corruption and also our own task called zinc_span_corruption. The pretraining mixture is called zinc_and_c4_mix. The code snippet below illustrates how to define zinc_and_c4_mix (e.g., you can just add this code snippet to tasks.py). Our Gin config files for pretraining are located in configs/pretrain. Data files can be downloaded from here.

...
import tensorflow.compat.v2 as tf
...
seqio.TaskRegistry.add(
    'zinc_span_corruption',
    source=seqio.TFExampleDataSource(
        split_to_filepattern={
            'test': # Path to zinc_smiles_test.tfrecords,
            'validation': # Path to zinc_smiles_val.tfrecords,
            'train': # Path to zinc_smiles_train.tfrecords,
        },
        feature_description={
            'text': tf.io.FixedLenFeature([], dtype=tf.string),
        }),
    preprocessors=[
        functools.partial(
            preprocessors.rekey, key_map={
                'inputs': None,
                'targets': 'text'
            }),
        seqio.preprocessors.tokenize,
        preprocessors.span_corruption,
        seqio.preprocessors.append_eos_after_trim,
    ],
    output_features=DEFAULT_OUTPUT_FEATURES,
    metric_fns=[])

seqio.MixtureRegistry.add('zinc_and_c4_mix', [('zinc_span_corruption', 1),
                                              ('c4_v220_span_corruption', 1)])
)

Finetuning (MolT5-based models)

We also used the t5x framework for finetuning MolT5-based models. Please first go over this document. Our Gin config files for finetuning are located in configs/finetune. For each of the Gin file, you need to set the INITIAL_CHECKPOINT_PATH variables (please use one of the checkpoints mentioned in this section). Note that there are two new tasks, which are named caption2smiles and smiles2caption. The code snippet below illustrates how to define the tasks. Data files can be downloaded from here.

...
# Metrics
_TASK_EVAL_METRICS_FNS = [
    metrics.bleu,
    metrics.rouge,
    metrics.sequence_accuracy
]

# Data Source
DATA_SOURCE = seqio.TFExampleDataSource(
    split_to_filepattern={
        'train': # Path to chebi_20_train.tfrecords,
        'validation': # Path to chebi_20_dev.tfrecords,
        'test': # Path to chebi_20_test.tfrecords
    },
    feature_description={
        'caption': tf.io.FixedLenFeature([], dtype=tf.string),
        'smiles': tf.io.FixedLenFeature([], dtype=tf.string),
        'cid': tf.io.FixedLenFeature([], dtype=tf.string),
    }
)

# Molecular Captioning (smiles2caption)
seqio.TaskRegistry.add(
    'smiles2caption',
    source=DATA_SOURCE,
    preprocessors=[
        functools.partial(
            preprocessors.rekey,
            key_map={
                'inputs': 'smiles',
                'targets': 'caption'
            }),
        seqio.preprocessors.tokenize,
        seqio.preprocessors.append_eos_after_trim,
    ],
    output_features=DEFAULT_OUTPUT_FEATURES,
    metric_fns=_TASK_EVAL_METRICS_FNS,
)

# Molecular Captioning (caption2smiles)
seqio.TaskRegistry.add(
    'caption2smiles',
    source=DATA_SOURCE,
    preprocessors=[
        functools.partial(
            preprocessors.rekey,
            key_map={
                'inputs': 'caption',
                'targets': 'smiles'
            }),
        seqio.preprocessors.tokenize,
        seqio.preprocessors.append_eos_after_trim,
    ],
    output_features=DEFAULT_OUTPUT_FEATURES,
    metric_fns=_TASK_EVAL_METRICS_FNS,
)

Datasets

Citation

If you found our work useful, please cite:

@article{edwards2022translation,
  title={Translation between Molecules and Natural Language},
  author={Edwards, Carl and Lai, Tuan and Ros, Kevin and Honke, Garrett and Ji, Heng},
  journal={arXiv preprint arXiv:2204.11817},
  year={2022}
}
precise iris segmentation

PI-DECODER Introduction PI-DECODER, a decoder structure designed for Precise Iris Segmentation and Location. The decoder structure is shown below: Ple

8 Aug 08, 2022
Python library for Serbian Natural language processing (NLP)

SrbAI - Python biblioteka za procesiranje srpskog jezika SrbAI je projekat prikupljanja algoritama i modela za procesiranje srpskog jezika u jedinstve

Serbian AI Society 3 Nov 22, 2022
Pipeline for training LSA models using Scikit-Learn.

Latent Semantic Analysis Pipeline for training LSA models using Scikit-Learn. Usage Instead of writing custom code for latent semantic analysis, you j

Dani El-Ayyass 23 Sep 05, 2022
The code for the Subformer, from the EMNLP 2021 Findings paper: "Subformer: Exploring Weight Sharing for Parameter Efficiency in Generative Transformers", by Machel Reid, Edison Marrese-Taylor, and Yutaka Matsuo

Subformer This repository contains the code for the Subformer. To help overcome this we propose the Subformer, allowing us to retain performance while

Machel Reid 10 Dec 27, 2022
Integrating the Best of TF into PyTorch, for Machine Learning, Natural Language Processing, and Text Generation. This is part of the CASL project: http://casl-project.ai/

Texar-PyTorch is a toolkit aiming to support a broad set of machine learning, especially natural language processing and text generation tasks. Texar

ASYML 726 Dec 30, 2022
Demo programs for the Talking Head Anime from a Single Image 2: More Expressive project.

Demo Code for "Talking Head Anime from a Single Image 2: More Expressive" This repository contains demo programs for the Talking Head Anime

Pramook Khungurn 901 Jan 06, 2023
Implementation of TF-IDF algorithm to find documents similarity with cosine similarity

NLP learning Trying to learn NLP to use in my projects! Table of Contents About The Project Built With Getting Started Requirements Run Usage License

Faraz Farangizadeh 3 Aug 25, 2022
A natural language processing model for sequential sentence classification in medical abstracts.

NLP PubMed Medical Research Paper Abstract (Randomized Controlled Trial) A natural language processing model for sequential sentence classification in

Hemanth Chandran 1 Jan 17, 2022
Kashgari is a production-level NLP Transfer learning framework built on top of tf.keras for text-labeling and text-classification, includes Word2Vec, BERT, and GPT2 Language Embedding.

Kashgari Overview | Performance | Installation | Documentation | Contributing 🎉 🎉 🎉 We released the 2.0.0 version with TF2 Support. 🎉 🎉 🎉 If you

Eliyar Eziz 2.3k Dec 29, 2022
Official codebase for Can Wikipedia Help Offline Reinforcement Learning?

Official codebase for Can Wikipedia Help Offline Reinforcement Learning?

Machel Reid 82 Dec 19, 2022
A design of MIDI language for music generation task, specifically for Natural Language Processing (NLP) models.

MIDI Language Introduction Reference Paper: Pop Music Transformer: Beat-based Modeling and Generation of Expressive Pop Piano Compositions: code This

Robert Bogan Kang 3 May 25, 2022
HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis

HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis Jungil Kong, Jaehyeon Kim, Jaekyoung Bae In our paper, we p

Jungil Kong 1.1k Jan 02, 2023
硕士期间自学的NLP子任务,供学习参考

NLP_Chinese_down_stream_task 自学的NLP子任务,供学习参考 任务1 :短文本分类 (1).数据集:THUCNews中文文本数据集(10分类) (2).模型:BERT+FC/LSTM,Pytorch实现 (3).使用方法: 预训练模型使用的是中文BERT-WWM, 下载地

12 May 31, 2022
RIDE automatically creates the package and boilerplate OOP Python node scripts as per your needs

RIDE: ROS IDE RIDE automatically creates the package and boilerplate OOP Python code for nodes as per your needs (RIDE is not an IDE, but even ROS isn

Jash Mota 20 Jul 14, 2022
Entity Disambiguation as text extraction (ACL 2022)

ExtEnD: Extractive Entity Disambiguation This repository contains the code of ExtEnD: Extractive Entity Disambiguation, a novel approach to Entity Dis

Sapienza NLP group 121 Jan 03, 2023
The source code of HeCo

HeCo This repo is for source code of KDD 2021 paper "Self-supervised Heterogeneous Graph Neural Network with Co-contrastive Learning". Paper Link: htt

Nian Liu 106 Dec 27, 2022
Phrase-Based & Neural Unsupervised Machine Translation

Unsupervised Machine Translation This repository contains the original implementation of the unsupervised PBSMT and NMT models presented in Phrase-Bas

Facebook Research 1.5k Dec 28, 2022
Use fastai-v2 with HuggingFace's pretrained transformers

FastHugs Use fastai v2 with HuggingFace's pretrained transformers, see the notebooks below depending on your task: Text classification: fasthugs_seq_c

Morgan McGuire 111 Nov 16, 2022
⚖️ A Statutory Article Retrieval Dataset in French.

A Statutory Article Retrieval Dataset in French This repository contains the Belgian Statutory Article Retrieval Dataset (BSARD), as well as the code

Maastricht Law & Tech Lab 19 Nov 17, 2022
Programme de chiffrement et de déchiffrement inverse d'un message en python3.

Chiffrement Inverse En Python3 Programme de chiffrement et de déchiffrement inverse d'un message en python3. Explication du chiffrement inverse avec c

Malik Makkes 2 Mar 26, 2022