An implementation of the Pay Attention when Required transformer

Overview

Pay Attention when Required (PAR) Transformer-XL

An implementation of the Pay Attention when Required transformer from the paper: https://arxiv.org/pdf/2009.04534.pdf

alt text [source: Jonathan Kernes]

Quick overview

The Pay Attention when Required Transformer (Mandava, et. al. 2020) is just a regular transformer-XL (Dai et. al. 2019)[https://arxiv.org/pdf/1901.02860.pdf] , but the ratio of attention and dense layers has been optimized. This optimization is performed by allowing the network to choose which types of layer it prefers in each block of the network. The present implementation is not an exact replica of the author's efforts. Instead, we perform a simultaneous optimization procedure on both the model architecture and model parameters. The search is performed using a SuperNet, which is a sequential neural network composed of stochastic blocks, as shown in the figure below (taken from the paper. Please don't sue me!)

alt text [Source: Mandava et. al. 2020]

The key component is a Gumbel-Softmax layer [(Jang et al., 2016) and (Maddison et al., 2016). jang link: https://arxiv.org/pdf/1611.01144.pdf]. This layer is a continuous representation of a discrete sampling from a Categorical distribution, thereby allowing us to use gradients to learn parameters of a discrete distribution. (Recall a categorical is a distrbution over K states with kth state having probability pi_k, and we must have the normalization condition \sum_{i=1}^K pi_i = 1)

As the model learns, it is free to adjust both the usual model parameters, as well as its architecture search parameters pi, indicating the probability of choosing either

  1. Attention

  2. Dense

  3. Identity

for any given stochastic block. We perform simulated annealing: since the categorical distribution is approximated by a continuous representation, we get some scores like (0.02, 0.98, 0.02) for the probability of say sampling that state 2 is picked. The sharpness of this is set by a parameter \tau (the temperature), with a categorical distribution the limit tau-->0. Simulated annealing means we begin with tau=1 to let the model figure out what it wants, then slowly decrease tau so the distribution approaches a categorical.

All of this is implemented on the freely available wiki-text2 dataset.

Explanation of the main GIF: The main gif is the result of our experiments. It shows the pi distribution for each stochastic block of a 6 block SuperNet, as a function of training iterations. The number indicates the probability of the most likely layer type (darker means more probable). As you can see, the model learns to put attention in the beginning, and dense layers at the end.

Requirements

Usual ML stuff, if you have a conda environment, python 3+, TensorFlow 2+ you should be ok. You will need TensorFlow Text as well to handle the SentencePiece Tokenization

If you choose to run your own tokenizer (a flag option in data_utils for handling new text data), you will also need to download the SentencePiece package: https://github.com/google/sentencepiece

Data

The dataset used is Wiki-text2. We have provided a copy of this in the data folder, along with some preprocessed data for training. In order to reproduce this from scratch, run the shell script

./create_tfrecords.sh

This will download the wiki-text2 dataset from its source, then proceed to clean, batch, and write the data to a tfrecords file. The shell script calls build_data.py which offers more control over what type of data to generate. The general parameters you will want to tune are:

*batch_size *seq_len.

You can also supply your own dataset instead of the one provided. The underlying tokenizer uses sentencepiece (Kudo): https://github.com/google/sentencepiece, which works at the byte level and can handle any kind of input. Simply change the --input_text flag to your file, and set the desired --vocab_size.

Why do we need to specify the batch size? Transformer XL uses memory states to form a recurrent, long range network. After analyzing a particular sequence say [A,B] of the sequence [A,B,C,D], the results of [A,B] are fed into the [C,D] calculation with a stop gradient. Therefore, we must be sure that each datapoint follows chronologically from the previous one.

This is achieved by context batching (see data_utils.py function) where we break the entire dataset into batch_size segments, then pull in order one sequence from each batch at a time to form the dataset. Because of this, note that adding more shards to the data could result in a large loss (order of batch_size*seq_len*shards), as each shard will drop the remaining datapoint of size (batch_size*seq_len) to keep the tensor shapes.

Addtional technical details

Per the original Transformer-XL, we also implement an adaptive softmax layer (Grave et. al. 2017, https://arxiv.org/abs/1609.04309) to deal with a potentially large number of outputs in the final dense layer. This implemenation is inspired by the TF 1.0 example at https://github.com/yangsaiyong/tf-adaptive-softmax-lstm-lm. To use the adaptive softmax, set the --cutoffs= flag in train.py. The cutoffs are the max values of each bin, and should NOT include the vocab size (i.e. the max cutoff of the final bin). If no cutoffs are specified, the model defaults to normal softmax.

For completeness, we have also provided a script optimal_cuts.py that determines the optimal cutoffs given a return space separated file of unigram probabilities (based on the assumptions of Grave et. al. regarding GPU computation complexity -- see the paper for details). The algorithm uses dynamic programming, but is quite slow at O(KN^2), for K cutoffs and N vocab words. In principle it's a one time cost to determine the cutoffs, but we are impatient and recommend to just play around with the cutoffs instead. See the script for flag details

Training and Benchmarks

The default model we use has memory length 16, feed-forward dimension 1024, attention dimension 128, and 6 stochastic blocks, with an adaptive softmax layer and 2 clusters. We trained on a colab GPU for 20 epochs, taking a total of 37 minutes. We use an Adam optimzer with cosine rate decay: an initial warmup of 4000 steps and a maximum learning rate of 1e-4, decaying to zero at the end of training. Our training benchmarks are:

Iteration (thousands) Train_perplexity Validation_perplexity Time
2.7k 163.9 114.4 1m 58s
8.5k 78.56 62.33 5m 37s
14.1k 65.71 51.88 9m 28s
28.3k 48.52 42.61 18m 40s
48.1k 41.85 39.57 31m 51s
56.5k 42.12 39.41 37m 14s

To train, simply run the shell script

./base_model.sh

adjusting the parameters as you see fit. The above model is the default configuration. To train in colab, simply open up the notebook "colab.ipynb" and follow the instructions. This is most easily done by going to [google.colab.com] and searching this repository in github. The benefit of colab, is it's easier to play around with the model after training.

While training, we have provided two ways to monitor the output

  1. A tensorboard log. The colab notebook takes care of running this for you. In the terminal, first create a 'logs' directory, then run the command tensorboard --logdir logs in a separate tab. This will open a port where you can view live plots of the learning rate, tau annealing, train/valid loss and perplexity.

  2. An output log saved to training_log.log. This will log the model summary, parameters, etc. as well as print out loss updates every 100 steps and save it to the log file.

Thanks for reading this far!

Enjoy! And thank you to the wonderful researchers that inspired this project.

If you would like to contribute, or have any comments questions concerns please open a pull request or email me directly.

Universal End2End Training Platform, including pre-training, classification tasks, machine translation, and etc.

背景 安装教程 快速上手 (一)预训练模型 (二)机器翻译 (三)文本分类 TenTrans 进阶 1. 多语言机器翻译 2. 跨语言预训练 背景 TrenTrans是一个统一的端到端的多语言多任务预训练平台,支持多种预训练方式,以及序列生成和自然语言理解任务。 安装教程 git clone git

Tencent Minority-Mandarin Translation Team 42 Dec 20, 2022
Implementation of Fast Transformer in Pytorch

Fast Transformer - Pytorch Implementation of Fast Transformer in Pytorch. This only work as an encoder. Yannic video AI Epiphany Install $ pip install

Phil Wang 167 Dec 27, 2022
DELTA is a deep learning based natural language and speech processing platform.

DELTA - A DEep learning Language Technology plAtform What is DELTA? DELTA is a deep learning based end-to-end natural language and speech processing p

DELTA 1.5k Dec 26, 2022
A python wrapper around the ZPar parser for English.

NOTE This project is no longer under active development since there are now really nice pure Python parsers such as Stanza and Spacy. The repository w

ETS 49 Sep 12, 2022
BERT has a Mouth, and It Must Speak: BERT as a Markov Random Field Language Model

BERT has a Mouth, and It Must Speak: BERT as a Markov Random Field Language Model

303 Dec 17, 2022
Codes to pre-train Japanese T5 models

t5-japanese Codes to pre-train a T5 (Text-to-Text Transfer Transformer) model pre-trained on Japanese web texts. The model is available at https://hug

Megagon Labs 37 Dec 25, 2022
Text to speech converter with GUI made in Python.

Text-to-speech-with-GUI Text to speech converter with GUI made in Python. To run this download the zip file and run the main file or clone this repo.

SidTheMiner 1 Nov 15, 2021
Journey is a NLP-Powered Developer assistant

Journey Journey is a NLP-Powered Developer assistant Using on the powerful Natural Language Processing library Mindmeld, this projects aims to assist

Christian Eilers 21 Dec 11, 2022
Large-scale Self-supervised Pre-training Across Tasks, Languages, and Modalities

Hiring We are hiring at all levels (including FTE researchers and interns)! If you are interested in working with us on NLP and large-scale pre-traine

Microsoft 7.8k Jan 09, 2023
Using Bert as the backbone model for lime, designed for NLP task explanation (sentence pair text classification task)

Lime Comparing deep contextualized model for sentences highlighting task. In addition, take the classic explanation model "LIME" with bert-base model

JHJu 2 Jan 18, 2022
The first online catalogue for Arabic NLP datasets.

Masader The first online catalogue for Arabic NLP datasets. This catalogue contains 200 datasets with more than 25 metadata annotations for each datas

ARBML 94 Dec 26, 2022
Plugin repository for Macast

Macast-plugins Plugin repository for Macast. How to use third-party player plugin Download Macast from GitHub Release. Download the plugin you want fr

109 Jan 04, 2023
Creating an Audiobook (mp3 file) using a Ebook (epub) using BeautifulSoup and Google Text to Speech

epub2audiobook Creating an Audiobook (mp3 file) using a Ebook (epub) using BeautifulSoup and Google Text to Speech Input examples qual a pasta do seu

7 Aug 25, 2022
Geometry-Consistent Neural Shape Representation with Implicit Displacement Fields

Geometry-Consistent Neural Shape Representation with Implicit Displacement Fields [project page][paper][cite] Geometry-Consistent Neural Shape Represe

Yifan Wang 100 Dec 19, 2022
Pretrained language model and its related optimization techniques developed by Huawei Noah's Ark Lab.

Pretrained Language Model This repository provides the latest pretrained language models and its related optimization techniques developed by Huawei N

HUAWEI Noah's Ark Lab 2.6k Jan 08, 2023
This repository has a implementations of data augmentation for NLP for Japanese.

daaja This repository has a implementations of data augmentation for NLP for Japanese: EDA: Easy Data Augmentation Techniques for Boosting Performance

Koga Kobayashi 60 Nov 11, 2022
Official PyTorch implementation of SegFormer

SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers Figure 1: Performance of SegFormer-B0 to SegFormer-B5. Project page

NVIDIA Research Projects 1.4k Dec 29, 2022
Behavioral Testing of Clinical NLP Models

Behavioral Testing of Clinical NLP Models This repository contains code for testing the behavior of clinical prediction models based on patient letter

Betty van Aken 2 Sep 20, 2022
Script to generate VAD dataset used in Asteroid recipe

About the dataset LibriVAD is an open source dataset for voice activity detection in noisy environments. It is derived from LibriSpeech signals (clean

11 Sep 15, 2022
Open source annotation tool for machine learning practitioners.

doccano doccano is an open source text annotation tool for humans. It provides annotation features for text classification, sequence labeling and sequ

7.1k Jan 01, 2023