Code for CVPR 2021 paper: Revamping Cross-Modal Recipe Retrieval with Hierarchical Transformers and Self-supervised Learning

Overview

Revamping Cross-Modal Recipe Retrieval with Hierarchical Transformers and Self-supervised Learning

This is the PyTorch companion code for the paper:

Amaia Salvador, Erhan Gundogdu, Loris Bazzani, and Michael Donoser. Revamping Cross-Modal Recipe Retrieval with Hierarchical Transformers and Self-supervised Learning. CVPR 2021

If you find this code useful in your research, please consider citing using the following BibTeX entry:

@inproceedings{salvador2021revamping,
    title={Revamping Cross-Modal Recipe Retrieval with Hierarchical Transformers and Self-supervised Learning},
    author={Salvador, Amaia and Gundogdu, Erhan and Bazzani, Loris and Donoser, Michael},
    booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
    month = {June},
    year = {2021}
}

Cloning

This repository uses git-lfs to store model checkpoint files. Make sure to install it before cloning by following the instructions here:

Once installed, model checkpoint files will be automatically downloaded when cloning the repository with:

git clone [email protected]:amzn/image-to-recipe-transformers.git

These files can optionally be ignored by using git lfs install --skip-smudge before cloning the repository, and can be downloaded at any time using git lfs pull.

Installation

  • Create conda environment: conda env create -f environment.yml
  • Activate it with conda activate im2recipetransformers

Data preparation

  • Download & uncompress Recipe1M dataset. The contents of the directory DATASET_PATH should be the following:
layer1.json
layer2.json
train/
val/
test/

The directories train/, val/, and test/ must contain the image files for each split after uncompressing.

  • Make splits and create vocabulary by running:
python preprocessing.py --root DATASET_PATH

This process will create auxiliary files under DATASET_PATH/traindata, which will be used for training.

Training

  • Launch training with:
python train.py --model_name model --root DATASET_PATH --save_dir /path/to/saved/model/checkpoints

Tensorboard logging can be enabled with --tensorboard. Then, from the checkpoints directory run:

tensorboard --logdir "./" --port PORT

Run python train.py --help for the full list of available arguments.

Evaluation

  • Extract features from the trained model for the test set samples of Recipe1M:
python test.py --model_name model --eval_split test --root DATASET_PATH --save_dir /path/to/saved/model/checkpoints
  • Compute MedR and recall metrics for the extracted feature set:
python eval.py --embeddings_file /path/to/saved/model/checkpoints/model/feats_test.pkl --medr_N 10000

Pretrained models

  • We provide pretrained model weights under the checkpoints directory. Make sure you run git lfs pull to download the model files.
  • Extract the zip files. For each model, a folder named MODEL_NAME with two files, args.pkl, and model-best.ckpt is provided.
  • Extract features for the test set samples of Recipe1M using one of the pretrained models by running:
python test.py --model_name MODEL_NAME --eval_split test --root DATASET_PATH --save_dir ../checkpoints
  • A file with extracted features will be saved under ../checkpoints/MODEL_NAME.

Security

See CONTRIBUTING for more information.

License

This project is licensed under the Apache-2.0 License.

Owner
Amazon
Amazon
This script just scrapes the most recent Nepali news from Kathmandu Post and notifies the user about current events at regular intervals.It sends out the most recent news at random!

Nepali-news-notifier This script just scrapes the most recent Nepali news from Kathmandu Post and notifies the user about current events at regular in

Sachit Yadav 1 Feb 11, 2022
Code release for "COTR: Correspondence Transformer for Matching Across Images"

COTR: Correspondence Transformer for Matching Across Images This repository contains the inference code for COTR. We plan to release the training code

UBC Computer Vision Group 358 Dec 24, 2022
Code for PED: DETR For (Crowd) Pedestrian Detection

Code for PED: DETR For (Crowd) Pedestrian Detection

36 Sep 13, 2022
ChatterBot is a machine learning, conversational dialog engine for creating chat bots

ChatterBot ChatterBot is a machine-learning based conversational dialog engine build in Python which makes it possible to generate responses based on

Gunther Cox 12.8k Jan 03, 2023
Python library for parsing resumes using natural language processing and machine learning

CVParser Python library for parsing resumes using natural language processing and machine learning. Setup Installation on Linux and Mac OS Follow the

nafiu 0 Jul 29, 2021
A Non-Autoregressive Transformer based TTS, supporting a family of SOTA transformers with supervised and unsupervised duration modelings. This project grows with the research community, aiming to achieve the ultimate TTS.

A Non-Autoregressive Transformer based TTS, supporting a family of SOTA transformers with supervised and unsupervised duration modelings. This project grows with the research community, aiming to ach

Keon Lee 237 Jan 02, 2023
A PyTorch implementation of paper "Learning Shared Semantic Space for Speech-to-Text Translation", ACL (Findings) 2021

Chimera: Learning Shared Semantic Space for Speech-to-Text Translation This is a Pytorch implementation for the "Chimera" paper Learning Shared Semant

Chi Han 43 Dec 28, 2022
AEC_DeepModel - Deep learning based acoustic echo cancellation baseline code

AEC_DeepModel - Deep learning based acoustic echo cancellation baseline code

凌逆战 75 Dec 05, 2022
A look-ahead multi-entity Transformer for modeling coordinated agents.

baller2vec++ This is the repository for the paper: Michael A. Alcorn and Anh Nguyen. baller2vec++: A Look-Ahead Multi-Entity Transformer For Modeling

Michael A. Alcorn 30 Dec 16, 2022
A Python 3.6+ package to run .many files, where many programs written in many languages may exist in one file.

RunMany Intro | Installation | VSCode Extension | Usage | Syntax | Settings | About A tool to run many programs written in many languages from one fil

6 May 22, 2022
An easy to use, user-friendly and efficient code for extracting OpenAI CLIP (Global/Grid) features from image and text respectively.

Extracting OpenAI CLIP (Global/Grid) Features from Image and Text This repo aims at providing an easy to use and efficient code for extracting image &

Jianjie(JJ) Luo 13 Jan 06, 2023
Modeling cumulative cases of Covid-19 in the US during the Covid 19 Delta wave using Bayesian methods.

Introduction The goal of this analysis is to find a model that fits the observed cumulative cases of COVID-19 in the US, starting in Mid-July 2021 and

Alexander Keeney 1 Jan 05, 2022
AI and Machine Learning workflows on Anthos Bare Metal.

Hybrid and Sovereign AI on Anthos Bare Metal Table of Contents Overview Terraform as IaC Substrate ABM Cluster on GCE using Terraform TensorFlow ResNe

Google Cloud Platform 8 Nov 26, 2022
In this repository we have tested 3 VQA models on the ImageCLEF-2019 dataset.

Med-VQA In this repository we have tested 3 VQA models on the ImageCLEF-2019 dataset. Two of these are made on top of Facebook AI Reasearch's Multi-Mo

Kshitij Ambilduke 8 Apr 14, 2022
iSTFTNet : Fast and Lightweight Mel-spectrogram Vocoder Incorporating Inverse Short-time Fourier Transform

iSTFTNet : Fast and Lightweight Mel-spectrogram Vocoder Incorporating Inverse Short-time Fourier Transform This repo try to implement iSTFTNet : Fast

Rishikesh (ऋषिकेश) 126 Jan 02, 2023
kochat

Kochat 챗봇 빌더는 성에 안차고, 자신만의 딥러닝 챗봇 애플리케이션을 만드시고 싶으신가요? Kochat을 이용하면 손쉽게 자신만의 딥러닝 챗봇 애플리케이션을 빌드할 수 있습니다. # 1. 데이터셋 객체 생성 dataset = Dataset(ood=True) #

1 Oct 25, 2021
Library for fast text representation and classification.

fastText fastText is a library for efficient learning of word representations and sentence classification. Table of contents Resources Models Suppleme

Facebook Research 24.1k Jan 05, 2023
Grover is a model for Neural Fake News -- both generation and detectio

Grover is a model for Neural Fake News -- both generation and detection. However, it probably can also be used for other generation tasks.

Rowan Zellers 856 Dec 24, 2022
Learning Spatio-Temporal Transformer for Visual Tracking

STARK The official implementation of the paper Learning Spatio-Temporal Transformer for Visual Tracking Highlights The strongest performances Tracker

Multimedia Research 485 Jan 04, 2023
Word Bot for JKLM Bomb Party

Word Bot for JKLM Bomb Party A bot for Bomb Party on https://www.jklm.fun (Only English) Requirements pynput pyperclip pyautogui Usage: Step 1: Run th

Nicolas 7 Oct 30, 2022