In this project, we compared Spanish BERT and Multilingual BERT in the Sentiment Analysis task.

Overview

Applying BERT Fine Tuning to Sentiment Classification on Amazon Reviews

Abstract

Sentiment analysis has made great progress in recent years, due to the fact that companies want to have a better understanding of how their products are classified by their consumers. However, despite the great advances that emerge in the field of artificial intelligence to solve this task, the most robust models are found in the English language. In the present work, we compare two Artificial Intelligence models that have monolingual and Multilingual approaches, which are Spanish BERT and Multilingual BERT, models based on BERT's transformer Architecture, to which the fine tuned technique was applied for the task of Sentiment analysis on the Amazon reviews dataset in Spanish using the accuracy and F1 score metrics. Finally, it was found that the Spanish BERT model has the best results for the sentiment analysis task on the Amazon reviews dataset in Spanish.

this paper is available here

Pipeline



Prerequisites

  • Linux / Window
  • Python3

Clone this Repository

git clone https://github.com/alexliqu09/Sentiment-Analysis-on-Amazon-Reviews.git

Train model

If you want to train the models use the colab Notebooks

Run the work in local

If you want to proof the work , you should run the following commands:

  • First , Install requeriments file:
pip install -r requeriments.txt
  • Second , download the Weights of Beto & MBERT and put them in this directory

  • Third , Start Streamlit server:

streamlit run main.py
  • Note:
Local host : http://localhost:8501 
Network URL:  http://192.168.0.5:8501

Run with Docker 🐋

#Bulding docker image 

docker build -t bert .

#RUN container
docker run -t -p 5000:5000 --name betocontainer bert

open http://172.17.0.2:8501

If you find useful our work , please cite this paper:

@inproceedings{@lvrBERT,
  title={Applying BERT Fine Tuning to Sentiment Classification on Amazon Reviews},
  author={Lique, Alexander and Vásquez, Diego and Rios, Manuel },
  year={2021}
}
Owner
Alexander Leonardo Lique Lamas
I am a computer science student and an Artificial Intelligence enthusiast.
Alexander Leonardo Lique Lamas
Seonghwan Kim 24 Sep 11, 2022
Bidirectional LSTM-CRF and ELMo for Named-Entity Recognition, Part-of-Speech Tagging and so on.

anaGo anaGo is a Python library for sequence labeling(NER, PoS Tagging,...), implemented in Keras. anaGo can solve sequence labeling tasks such as nam

Hiroki Nakayama 1.5k Dec 05, 2022
The NewSHead dataset is a multi-doc headline dataset used in NHNet for training a headline summarization model.

This repository contains the raw dataset used in NHNet [1] for the task of News Story Headline Generation. The code of data processing and training is available under Tensorflow Models - NHNet.

Google Research Datasets 31 Jul 15, 2022
Sample data associated with the Aurora-BP study

The Aurora-BP Study and Dataset This repository contains sample code, sample data, and explanatory information for working with the Aurora-BP dataset

Microsoft 16 Dec 12, 2022
Deduplication is the task to combine different representations of the same real world entity.

Deduplication is the task to combine different representations of the same real world entity. This package implements deduplication using active learning. Active learning allows for rapid training wi

63 Nov 17, 2022
Pipeline for chemical image-to-text competition

BMS-Molecular-Translation Introduction This is a pipeline for Bristol-Myers Squibb – Molecular Translation by Vadim Timakin and Maksim Zhdanov. We got

Maksim Zhdanov 7 Sep 20, 2022
Deep Learning for Natural Language Processing - Lectures 2021

This repository contains slides for the course "20-00-0947: Deep Learning for Natural Language Processing" (Technical University of Darmstadt, Summer term 2021).

0 Feb 21, 2022
Use fastai-v2 with HuggingFace's pretrained transformers

FastHugs Use fastai v2 with HuggingFace's pretrained transformers, see the notebooks below depending on your task: Text classification: fasthugs_seq_c

Morgan McGuire 111 Nov 16, 2022
A python package to fine-tune transformer-based models for named entity recognition (NER).

nerblackbox A python package to fine-tune transformer-based language models for named entity recognition (NER). Resources Source Code: https://github.

Felix Stollenwerk 13 Jul 30, 2022
Faster, modernized fork of the language identification tool langid.py

py3langid py3langid is a fork of the standalone language identification tool langid.py by Marco Lui. Original license: BSD-2-Clause. Fork license: BSD

Adrien Barbaresi 12 Nov 05, 2022
neural network based speaker embedder

Content What is deepaudio-speaker? Installation Get Started Model Architecture How to contribute to deepaudio-speaker? Acknowledge What is deepaudio-s

20 Dec 29, 2022
Healthsea is a spaCy pipeline for analyzing user reviews of supplementary products for their effects on health.

Welcome to Healthsea ✨ Create better access to health with spaCy. Healthsea is a pipeline for analyzing user reviews to supplement products by extract

Explosion 75 Dec 19, 2022
Korean Sentence Embedding Repository

Korean-Sentence-Embedding 🍭 Korean sentence embedding repository. You can download the pre-trained models and inference right away, also it provides

80 Jan 02, 2023
CrossNER: Evaluating Cross-Domain Named Entity Recognition (AAAI-2021)

CrossNER is a fully-labeled collected of named entity recognition (NER) data spanning over five diverse domains (Politics, Natural Science, Music, Literature, and Artificial Intelligence) with specia

Zihan Liu 89 Nov 10, 2022
Multilingual finetuning of Machine Translation model on low-resource languages. Project for Deep Natural Language Processing course.

Low-resource-Machine-Translation This repository contains the code for the project relative to the course Deep Natural Language Processing. The goal o

Andrea Cavallo 3 Jun 22, 2022
The Easy-to-use Dialogue Response Selection Toolkit for Researchers

The Easy-to-use Dialogue Response Selection Toolkit for Researchers

GMFTBY 32 Nov 13, 2022
ChainKnowledgeGraph, 产业链知识图谱包括A股上市公司、行业和产品共3类实体

ChainKnowledgeGraph, 产业链知识图谱包括A股上市公司、行业和产品共3类实体,包括上市公司所属行业关系、行业上级关系、产品上游原材料关系、产品下游产品关系、公司主营产品、产品小类共6大类。 上市公司4,654家,行业511个,产品95,559条、上游材料56,824条,上级行业480条,下游产品390条,产品小类52,937条,所属行业3,946条。

liuhuanyong 415 Jan 06, 2023
This repository contains the code for EMNLP-2021 paper "Word-Level Coreference Resolution"

Word-Level Coreference Resolution This is a repository with the code to reproduce the experiments described in the paper of the same name, which was a

79 Dec 27, 2022
A linter to manage all your python exceptions and try/except blocks (limited only for those who like dinosaurs).

Manage your exceptions in Python like a PRO Currently in BETA. Inspired by this blog post. I shared the building process of this tool here. “For those

Guilherme Latrova 353 Dec 31, 2022
A method for cleaning and classifying text using transformers.

NLP Translation and Classification The repository contains a method for classifying and cleaning text using NLP transformers. Overview The input data

Ray Chamidullin 0 Nov 15, 2022