This repository serves as a place to document a toy attempt on how to create a generative text model in Catalan, based on GPT-2

Overview

GPT-2 in Catalan

This repository serves as a place to document a toy attempt on how to create a generative text model in Catalan, based on GPT-2. In other words... this is more of a prototype and a personal playground than a serious attempt to have a fully functional GPT-2 in Catalan.

Nevertheless, I hope this can also help someone else train their own GPT-2 model and provide some pointers on how to do so.

Suggestions and constructive criticism are always welcome!

1. GPT-2 📝

1.1. What is GPT-2

GPT-2 (GPT-2 stands for Generative Pre-trained Transformer 2) is a transformer-based language model trained in large volumes of data and was not trained with a specific task in mind. Nevertheless, it has probably been used mostly for generating new text.

A better and further explanation can be found here (http://jalammar.github.io/illustrated-gpt2/).

1.2. Why GPT-2

It is undeniable that GPT-2 played a large role and became very popular when it came out. It has also created some controversy. These aside, GPT-2 acted as a big step forward in terms of generating texts... And is also "faster" to train on custom data than its next generation sibling, GPT-3.

2. Training 🔨

2.1. Requirements 📎

You will need a powerful GPU or reduce the batch size. You can also use a VM from a Cloud service such as Google Colab or Microsoft Azure.

2.2. Training Script 📈

The training is implemented in the train_GPT2.py script, which serves as a skeleton. You can run it from the Commandline and passing all the arguments.

e.g.

cd src
./train_GPT2.py \
    --model DeepESP/gpt2-spanish \
    --tokenizer DeepESP/gpt2-spanish \
    --train_path ../data/catalan_corpus_train.csv \
    --test_path ../data/catalan_corpus_test.csv \
    --n_epochs 1 \
    --train_batch_size 4 \
    --eval_batch_size 8 \
    --eval_steps 100 \
    --save_steps 1000 \
    --warmup_steps 100 \
    --output gpt2-catalan

2.3. About the data used 📂 open_file_folder

The data used has mostly been the WikiCorpus data provided by the Computer Science department @ FIB, UPC (Facultat d'Informàtica de Barcelona, Universitat Politècnica de Catalunya).

You can download it using the datasets library from Huggingface:

from datasets import load_dataset

dataset = load_dataset("wikicorpus, 'raw_ca')

Or you can use the download_wikicorpus.py file in this repository, which also splits the data in train/test and can create a smaller subset for testing, if desired.

2.3.1. WikiCorpus PROs 👍

Well, the data is already obtained. That's always a pro.

2.3.2. WikiCorpus CONs 👎

We are limiting the knowledge of the Language model to data from the Wikipedia. Therefore, this model will probably be more error-prone with informal text inputs. This includes data from chats, colloquialisms and text from social media.

Additionally, the size of the data is tiny with respect to what it should be.

Further training for specific tasks

Once the model is trained in Catalan and we have a base, we can further train this model for a specific task in mind.

A couple of Proof of Concepts (PoC) have been done using data gathered from Twitter and also from Catalan songs.

Testing the model 🐱

We can test the trained model easily using the script test_generation.py.

cd src
python .\test_generation.py -t DeepESP/gpt2-spanish -m ../data/gpt2-catalan -i generation_test.txt

3. Questions

3.1. Why Catalan

Artificial Intelligence should not be only for largely spoken languages, such as English or even Spanish. Catalan, a minority language, is my mother tongue and it's always fun to see something you work with also operating in your own language. So why not?

3.2. Why use a Pretrained model in Spanish

Although Spanish and Catalan are different languages, they share a lot of expressions, vocabulary and grammatical structures. Therefore, basing a Catalan model on a previously trained model in a close language such as Spanish is not unreasonable.

Transferring the knowledge from it to our model is better than starting from zero, specially to save computational time.

3.3. Can I use another data/language

Even though the scripts are all prepared with the Catalan language in mind, the scripts should work with any text data, be it Catalan from the Wikicorpus,

Feel free to change the CatalanDataset class or swap it with yours, since probably formatting of the input text is the most varying aspect between projects.

Be sure to also change the base model, since if you want to train another language (e.g. German), basing it on a pre-trained model in Spanish will not work well.

4. TO-DO 🚧

Since we are actually using the Transfer learning approach and relying on a previously pretrained model in Spanish, we probably don't have as an accurate model as we should.

More varied data should also be used during the training, because it is very biased towards informative data (for obvious reasons).

Owner
Laura
.
Laura
Based on 125GB of data leaked from Twitch, you can see their monthly revenues from 2019-2021

Twitch Revenues Bu script'i kullanarak istediğiniz yayıncıların, Twitch'den sızdırılan 125 GB'lik veriye dayanarak, 2019-2021 arası aylık gelirlerini

4 Nov 11, 2021
The official implementation of VAENAR-TTS, a VAE based non-autoregressive TTS model.

VAENAR-TTS This repo contains code accompanying the paper "VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis". Sa

THUHCSI 138 Oct 28, 2022
Towards Nonlinear Disentanglement in Natural Data with Temporal Sparse Coding

Towards Nonlinear Disentanglement in Natural Data with Temporal Sparse Coding

Bethge Lab 61 Dec 21, 2022
Implemented shortest-circuit disambiguation, maximum probability disambiguation, HMM-based lexical annotation and BiLSTM+CRF-based named entity recognition

Implemented shortest-circuit disambiguation, maximum probability disambiguation, HMM-based lexical annotation and BiLSTM+CRF-based named entity recognition

0 Feb 13, 2022
MPNet: Masked and Permuted Pre-training for Language Understanding

MPNet MPNet: Masked and Permuted Pre-training for Language Understanding, by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu, is a novel pre-tr

Microsoft 228 Nov 21, 2022
Sploitus - Command line search tool for sploitus.com. Think searchsploit, but with more POCs

Sploitus Command line search tool for sploitus.com. Think searchsploit, but with

watchdog2000 5 Mar 07, 2022
Suite of 500 procedurally-generated NLP tasks to study language model adaptability

TaskBench500 The TaskBench500 dataset and code for generating tasks. Data The TaskBench dataset is available under wget http://web.mit.edu/bzl/www/Tas

Belinda Li 20 May 17, 2022
PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

VAENAR-TTS - PyTorch Implementation PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

Keon Lee 67 Nov 14, 2022
🤗 Transformers: State-of-the-art Machine Learning for Pytorch, TensorFlow, and JAX.

English | 简体中文 | 繁體中文 | 한국어 State-of-the-art Machine Learning for JAX, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrained models

Hugging Face 77.1k Dec 31, 2022
Official code repository of the paper Linear Transformers Are Secretly Fast Weight Programmers.

Linear Transformers Are Secretly Fast Weight Programmers This repository contains the code accompanying the paper Linear Transformers Are Secretly Fas

Imanol Schlag 77 Dec 19, 2022
NLP - Machine learning

Flipkart-product-reviews NLP - Machine learning About Product reviews is an essential part of an online store like Flipkart’s branding and marketing.

Harshith VH 1 Oct 29, 2021
Grover is a model for Neural Fake News -- both generation and detectio

Grover is a model for Neural Fake News -- both generation and detection. However, it probably can also be used for other generation tasks.

Rowan Zellers 856 Dec 24, 2022
Examples of using sparse attention, as in "Generating Long Sequences with Sparse Transformers"

Status: Archive (code is provided as-is, no updates expected) Update August 2020: For an example repository that achieves state-of-the-art modeling pe

OpenAI 1.3k Dec 28, 2022
The NewSHead dataset is a multi-doc headline dataset used in NHNet for training a headline summarization model.

This repository contains the raw dataset used in NHNet [1] for the task of News Story Headline Generation. The code of data processing and training is available under Tensorflow Models - NHNet.

Google Research Datasets 31 Jul 15, 2022
(ACL 2022) The source code for the paper "Towards Abstractive Grounded Summarization of Podcast Transcripts"

Towards Abstractive Grounded Summarization of Podcast Transcripts We provide the source code for the paper "Towards Abstractive Grounded Summarization

10 Jul 01, 2022
This repository structures data in title, summary, tags, sentiment given a fragment of a conversation

Understand-conversation-AI This repository structures data in title, summary, tags, sentiment given a fragment of a conversation How to install: pip i

Juan Camilo López Montes 1 Jan 11, 2022
ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators

ELECTRA Introduction ELECTRA is a method for self-supervised language representation learning. It can be used to pre-train transformer networks using

Google Research 2.1k Dec 28, 2022
Python implementation of TextRank for phrase extraction and summarization of text documents

PyTextRank PyTextRank is a Python implementation of TextRank as a spaCy pipeline extension, used to: extract the top-ranked phrases from text document

derwen.ai 1.9k Jan 06, 2023
Interactive Jupyter Notebook Environment for using the GPT-3 Instruct API

gpt3-instruct-sandbox Interactive Jupyter Notebook Environment for using the GPT-3 Instruct API Description This project updates an existing GPT-3 san

312 Jan 03, 2023
Creating a chess engine using GPT-3

GPT3Chess Creating a chess engine using GPT-3 Code for my article : https://towardsdatascience.com/gpt-3-play-chess-d123a96096a9 My game (white) vs GP

19 Dec 17, 2022