An ultra fast tiny model for lane detection, using onnx_parser, TensorRTAPI, torch2trt to accelerate. our model support for int8, dynamic input and profiling. (Nvidia-Alibaba-TensoRT-hackathon2021)

Overview

Ultra_Fast_Lane_Detection_TensorRT

An ultra fast tiny model for lane detection, using onnx_parser, TensorRTAPI to accelerate. our model support for int8, dynamic input and profiling. (Nvidia-Alibaba-TensoRT-hackathon2021)
这是一个基于TensorRT加速UFLD的repo,包含PyThon ONNX Parser以及C++ TensorRT API版本, 还包括Torch2TRT版本, 对源码和论文感兴趣的请参见:https://github.com/cfzd/Ultra-Fast-Lane-Detection

一. PyThon ONNX Parser

1. How to run

1) pip install -r requirements.txt

2) TensorRT7.x wil be fine, and other version may got some errors

2) For PyTorch, you can also try another version like 1.6, 1.5 or 1.4

2. Build ONNX(将训练好的pth/pt模型转换为onnx)

1) static(生成静态onnx模型):
python3 torch2onnx.py onnx_dynamic_int8/configs/tusimple_4.py --test_model ./tusimple_18.pth 

2) dynamic(生成支持动态输入的onnx模型):
First: vim torch2onnx.py
second: change "fix" from "True" to "False"
python3 torch2onnx.py onnx_dynamic_int8/configs/tusimple_4.py --test_model ./tusimple_18.pth

3. Build trt engine(将onnx模型转换为TensorRT的推理引擎)

We support many different types of engine export, such as static fp32, fp16, dynamic fp32, fp16, and int8 quantization
我们支持多种不同类型engine的导出,例如:静态fp32、fp16,动态fp32、fp16,以及int8的量化

static(fp32, fp16): 对于静态模型的导出,终端输入:

fp32:
python3 build_engine.py --onnx_path model_static.onnx --mode fp32<br/>
fp16:
python3 build_engine.py --onnx_path model_static.onnx --mode fp16<br/>

dynamic(fp32, fp16): 对于动态模型的导出,终端输入:

fp32:
python3 build_engine.py --onnx_path model_dynamic.onnx --mode fp32 --dynamic
fp16:
python3 build_engine.py --onnx_path model_dynamic.onnx --mode fp16 --dynamic

int8 quantization 如果想使用int8量化,终端输入:

python3 build_engine.py --onnx_path model_static.onnx --mode int8 --int8_data_path data/testset1000
# (int8_data_Path represents the calibration dataset)
# (其中int8_data_path表示校正数据集)

4. evaluate(compare)

(If you want to compare the acceleration and accuracy of reasoning through TRT with using pytorch, you can run the script)
(如果您想要比较通过TRT推理后,相对于使用PyTorch的加速以及精确度情况,可以运行该脚本)

python3 evaluate.py --pth_path PATH_OF_PTH_MODEL --trt_path PATH_OF_TRT_MODEL

二. torch2trt

torch2trt is an easy tool to convert pytorch model to tensorrt, you can check model details here:
https://github.com/NVIDIA-AI-IOT/torch2trt
(torch2trt 是一个易于使用的PyTorch到TensorRT转换器)

How to run

1) git clone https://github.com/NVIDIA-AI-IOT/torch2trt

2) python setup.py install

2) PyTorch >= 1.6 (other versions may got some errors)

生成trt模型

python3 export_trt.py

torch2trt 预测demo (可视化)

python3 demo_torch2trt.py --trt_path PATH_OF_TRT_MODEL --data_path PATH_OF_YOUR_IMG

evaluated

python3 evaluate.py --pth_path PATH_OF_PTH_MODEL --trt_path PATH_OF_TRT_MODEL --data_path PATH_OF_YOUR_IMG --torch2trt

三. C++ TensorRT API

生成权重文件

python3 export_trtcy.py

trt模型生成

修改第十行为 #define USE_FP32,则为FP32模式, 修改第十行为 #define USE_FP16,则为FP16模式

mkdir build
cd build
cmake ..
make
./lane_det -transfer             //  'lane_det.engine'

Tensorrt预测

./lane_det -infer  ../imgs 

四. trtexec

test tensorrt_dynamic_model on terminal, for instance, for batch_size=BATCH_SIZE, just run:

trtexec  --explicitBatch --minShapes=1x3x288x800 --optShapes=1x3x288x800 --maxShapes=32x3x288x800 --shapes=BATCH_SIZEx3x288x800 --loadEngine=lane_fp32_dynamic.trt --noDataTransfers --dumpProfile --separateProfileRun
You might also like...
Gpt2-WebAPI - The objective of this API is to provide the 3 best possible responses to sentences that the user would input via http GET request as a parameter
One Stop Anomaly Shop: Anomaly detection using two-phase approach: (a) pre-labeling using statistics, Natural Language Processing and static rules; (b) anomaly scoring using supervised and unsupervised machine learning.

One Stop Anomaly Shop (OSAS) Quick start guide Step 1: Get/build the docker image Option 1: Use precompiled image (might not reflect latest changes):

:hot_pepper: R²SQL: "Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing." (AAAI 2021)

R²SQL The PyTorch implementation of paper Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing. (AAAI 2021) Requirement

AIDynamicTextReader - A simple dynamic text reader based on Artificial intelligence

AI Dynamic Text Reader: This is a simple dynamic text reader based on Artificial

A fast Text-to-Speech (TTS) model. Work well for English, Mandarin/Chinese, Japanese, Korean, Russian and Tibetan (so far). 快速语音合成模型,适用于英语、普通话/中文、日语、韩语、俄语和藏语(当前已测试)。

简体中文 | English 并行语音合成 [TOC] 新进展 2021/04/20 合并 wavegan 分支到 main 主分支,删除 wavegan 分支! 2021/04/13 创建 encoder 分支用于开发语音风格迁移模块! 2021/04/13 softdtw 分支 支持使用 Sof

Simple and efficient RevNet-Library with DeepSpeed support
Simple and efficient RevNet-Library with DeepSpeed support

RevLib Simple and efficient RevNet-Library with DeepSpeed support Features Half the constant memory usage and faster than RevNet libraries Less memory

A high-level yet extensible library for fast language model tuning via automatic prompt search

ruPrompts ruPrompts is a high-level yet extensible library for fast language model tuning via automatic prompt search, featuring integration with Hugg

Comments
  • bug in UFLD_C++/main.cpp

    bug in UFLD_C++/main.cpp

    in function softmax_mul() : exp() don't substruct channel's (100) largest value; int funcion argmax(): "int max" should change to "float max".

    opened by tangjianping54 0
  • 请问怎么用CULane数据集训练的权重来推理

    请问怎么用CULane数据集训练的权重来推理

    我使用UFLD_C++来进行推理,修改了export_trtcy.py中的model = parsingNet(pretrained=False, backbone='18', cls_dim=(101, 56, 4), use_aux=False).cuda(),改为model = parsingNet(pretrained=False, backbone='18', cls_dim=(201, 18, 4), use_aux=False).cuda(),并且把OUTPUT_C改成201,把OUTPUT_H改成18,把OUTPUT_W改为4. 然后运行./lane_det -transfer的时候抛出了下面的错误: ./lane_det -transfer Loading weights: ../lane_culane.trtcy Platform supports fp16 mode and use it !!! Building engine, please wait for a while... [08/29/2022-11:29:31] [E] [TRT] (Unnamed Layer* 73) [Constant]: constant weights has count 29638656 but 46333952 was expected [08/29/2022-11:29:31] [E] [TRT] Could not compute dimensions for (Unnamed Layer* 73) [Constant]_output, because the network is not valid. [08/29/2022-11:29:31] [E] [TRT] Network validation failed. Build engine successfully! lane_det: /home/juche/Desktop/lmf_workspace/Ultra_Fast_Lane_Detection_TensorRT/UFLD_C++/UFLD/UFLD_net.cpp:138: void UFLD_net::APIToModel(nvinfer1::IHostMemory**): Assertion `engine != nullptr' failed. Aborted (core dumped)

    请问我该怎么办?

    opened by limengfei3675 1
  • Unpickling issue with torch2trt

    Unpickling issue with torch2trt

    I converted the tusimple_18.pth weight from the original UFLD repo using torch2onnx.py and build_engine.py scripts to a trt file. Running evaluate.py shows Inference time with PyTorch = 141.777 ms and Inference time with TensorRT_static = 27.395 ms in fp16. However, running UFLD_torch2trt/demo_torch2trt.py returns this error: Traceback (most recent call last): File "UFLD_torch2trt/demo_torch2trt.py", line 96, in <module> demo_with_torch2trt(trt_path, data_path) File "UFLD_torch2trt/demo_torch2trt.py", line 31, in demo_with_torch2trt model_trt.load_state_dict(torch.load(trt_file_path)) File "/home/nam/.local/lib/python3.6/site-packages/torch/serialization.py", line 593, in load return _legacy_load(opened_file, map_location, pickle_module, **pickle_load_args) File "/home/nam/.local/lib/python3.6/site-packages/torch/serialization.py", line 762, in _legacy_load magic_number = pickle_module.load(f, **pickle_load_args) _pickle.UnpicklingError: unpickling stack underflow It appears the issue mostly comes from loading old torchvision models, I tried to delete torch caches but it didnt work. I tried for both static and dynamic model but the result is the same. :(

    opened by namKolorfuL 0
  • Issue with demo_trt.py

    Issue with demo_trt.py

    Hi, I downloaded tusimple_18.pth weight from the original UFLD repo and converted it to trt using your scipts in UFLD_Tiny. However, when doing inference with demo_trt.py, i got this error:

    [email protected]:~/Desktop/Ultra_Fast_Lane_Detection_TensorRT$ python3 UFLD_Tiny/demo_trt.py --model ./model_static_fp16 Loading TRT file from path ./model_static_fp16.trt... [array([-0.2890625 , -1. , -1.4892578 , ..., 2.9804688 , 0.18823242, 9.140625 ], dtype=float32)] Traceback (most recent call last): File "UFLD_Tiny/demo_trt.py", line 123, in <module> main() File "UFLD_Tiny/demo_trt.py", line 93, in main out_j = trt_outputs[0].reshape(97, 56, 4) # tiny版本不一样 ValueError: cannot reshape array of size 22624 into shape (97,56,4) The output looks like a 1-D array. Any idea how to solve this? My system: Jetson TX2, Jetpack 4.5.1, Ubuntu 18.04, CUDA 10.2, Tensorrt 7.1.3

    opened by namKolorfuL 0
Releases(TRT2021)
Owner
steven.yan
Algorithm engineer
steven.yan
Tensorflow implementation of paper: Learning to Diagnose with LSTM Recurrent Neural Networks.

Multilabel time series classification with LSTM Tensorflow implementation of model discussed in the following paper: Learning to Diagnose with LSTM Re

Aaqib 552 Nov 28, 2022
Official implementation of MLP Singer: Towards Rapid Parallel Korean Singing Voice Synthesis

MLP Singer Official implementation of MLP Singer: Towards Rapid Parallel Korean Singing Voice Synthesis. Audio samples are available on our demo page.

Neosapience 103 Dec 23, 2022
The source code of HeCo

HeCo This repo is for source code of KDD 2021 paper "Self-supervised Heterogeneous Graph Neural Network with Co-contrastive Learning". Paper Link: htt

Nian Liu 106 Dec 27, 2022
Code for "Finetuning Pretrained Transformers into Variational Autoencoders"

transformers-into-vaes Code for Finetuning Pretrained Transformers into Variational Autoencoders (our submission to NLP Insights Workshop 2021). Gathe

Seongmin Park 22 Nov 26, 2022
Ukrainian TTS (text-to-speech) using Coqui TTS

title emoji colorFrom colorTo sdk app_file pinned Ukrainian TTS 🐸 green green gradio app.py false Ukrainian TTS 📢 🤖 Ukrainian TTS (text-to-speech)

Yurii Paniv 85 Dec 26, 2022
Simple GUI where you can enter an article and get a crisp summarized version.

Text-Summarization-using-TextRank-BART Simple GUI where you can enter an article and get a crisp summarized version. How to run: Clone the repo Instal

Rohit P 4 Sep 28, 2022
Silero Models: pre-trained speech-to-text, text-to-speech models and benchmarks made embarrassingly simple

Silero Models: pre-trained speech-to-text, text-to-speech models and benchmarks made embarrassingly simple

Alexander Veysov 3.2k Dec 31, 2022
keras implement of transformers for humans

keras implement of transformers for humans

苏剑林(Jianlin Su) 4.8k Jan 03, 2023
JaQuAD: Japanese Question Answering Dataset

JaQuAD: Japanese Question Answering Dataset for Machine Reading Comprehension (2022, Skelter Labs)

SkelterLabs 84 Dec 27, 2022
Document processing using transformers

Doc Transformers Document processing using transformers. This is still in developmental phase, currently supports only extraction of form data i.e (ke

Vishnu Nandakumar 13 Dec 21, 2022
EMNLP'2021: Can Language Models be Biomedical Knowledge Bases?

BioLAMA BioLAMA is biomedical factual knowledge triples for probing biomedical LMs. The triples are collected and pre-processed from three sources: CT

DMIS Laboratory - Korea University 41 Nov 18, 2022
A framework for cleaning Chinese dialog data

A framework for cleaning Chinese dialog data

Yida 136 Dec 20, 2022
Training open neural machine translation models

Train Opus-MT models This package includes scripts for training NMT models using MarianNMT and OPUS data for OPUS-MT. More details are given in the Ma

Language Technology at the University of Helsinki 167 Jan 03, 2023
Code for Editing Factual Knowledge in Language Models

KnowledgeEditor Code for Editing Factual Knowledge in Language Models (https://arxiv.org/abs/2104.08164). @inproceedings{decao2021editing, title={Ed

Nicola De Cao 86 Nov 28, 2022
ChessCoach is a neural network-based chess engine capable of natural-language commentary.

ChessCoach is a neural network-based chess engine capable of natural-language commentary.

Chris Butner 380 Dec 03, 2022
Include MelGAN, HifiGAN and Multiband-HifiGAN, maybe NHV in the future.

Fast (GAN Based Neural) Vocoder Chinese README Todo Submit demo Support NHV Discription Include MelGAN, HifiGAN and Multiband-HifiGAN, maybe include N

Zhengxi Liu (刘正曦) 134 Dec 16, 2022
Tokenizer - Module python d'analyse syntaxique et de grammaire, tokenization

Tokenizer Le Tokenizer est un analyseur lexicale, il permet, comme Flex and Yacc par exemple, de tokenizer du code, c'est à dire transformer du code e

Manolo 1 Aug 15, 2022
NLPShala , the best IDE for all Natural language processing tasks.

The revolutionary IDE for all NLP (Natural language processing) stuffs on the internet.

Abhi 3 Aug 08, 2021
DeepAmandine is an artificial intelligence that allows you to talk to it for hours, you won't know the difference.

DeepAmandine This is an artificial intelligence based on GPT-3 that you can chat with, it is very nice and makes a lot of jokes. We wish you a good ex

BuyWithCrypto 3 Apr 19, 2022