One Stop Anomaly Shop: Anomaly detection using two-phase approach: (a) pre-labeling using statistics, Natural Language Processing and static rules; (b) anomaly scoring using supervised and unsupervised machine learning.

Related tags

Text Data & NLPOSAS
Overview

One Stop Anomaly Shop (OSAS)

Quick start guide

Step 1: Get/build the docker image

Option 1: Use precompiled image (might not reflect latest changes):

docker pull tiberiu44/osas:latest
docker image tag tiberiu44/osas:latest osas:latest

Option 2: Build the image locally

git clone https://github.com/adobe/OSAS.git
cd OSAS
docker build . -f docker/osas-elastic/Dockerfile -t osas:latest

Step 2: After building the docker image you can start OSAS by typing:

docker run -p 8888:8888/tcp -p 5601:5601/tcp -v <ABSOLUTE PATH TO DATA FOLDER>:/app osas

IMPORTANT NOTE: Please modify the above command by adding the absolute path to your datafolder in the appropiate location

After OSAS has started (it might take 1-2 minutes) you can use your browser to access some standard endpoints:

For Debug (in case you need to):

docker run -p 8888:8888/tcp -p 5601:5601/tcp -v <ABSOLUTE PATH TO DATA FOLDER>:/app -ti osas /bin/bash

Building the test pipeline

This guide will take you through all the necessary steps to configure, train and run your own pipeline on your own dataset.

Prerequisite: Add you own CSV dataset into your data-folder (the one provided in the docker run command)

Once you started your docker image, use the OSAS console to gain CLI access to all the tools.

In what follows, we assume that your dataset is called dataset.csv. Please update the commands as necessary in case you use a different name/location.

Be sure you are running scripts in the root folder of OSAS:

cd /osas

Step 1: Build a custom pipeline configuration file - this can be done fully manually on by bootstraping using our conf autogenerator script:

python3 osas/main/autoconfig.py --input-file=/app/dataset.csv --output-file=/app/dataset.conf

The above command will generate a custom configuration file for your dataset. It will try guess field types and optimal combinations between fields. You can edit the generated file (which should be available in the shared data-folder), using your favourite editor.

Standard templates for label generator types are:

[LG_MULTINOMIAL]
generator_type = MultinomialField
field_name = <FIELD_NAME>
absolute_threshold = 10
relative_threshold = 0.1

[LG_TEXT]
generator_type = TextField
field_name = <FIELD_NAME>
lm_mode = char
ngram_range = (3, 5)

[LG_NUMERIC]
generator_type = NumericField
field_name = <FIELD_NAME>

[LG_MUTLINOMIAL_COMBINER]
generator_type = MultinomialFieldCombiner
field_names = ['<FIELD_1>', '<FIELD_2>', ...]
absolute_threshold = 10
relative_threshold = 0.1

[LG_KEYWORD]
generator_type = KeywordBased
field_name = <FIELD_NAME>
keyword_list = ['<KEYWORD_1>', '<KEYWORD_2>', '<KEYWORD_3>', ...]

[LG_REGEX]
generator_type = KnowledgeBased
field_name = <FIELD_NAME>
rules_and_labels_tuple_list = [('<REGEX_1>','<LABEL_1>'), ('<REGEX_2>','<LABEL_2>'), ...]

You can use the above templates to add as many label generators you want. Just make sure that the header IDs are unique in the configuration file.

Step 2: Train the pipeline

python3 osas/main/train_pipeline --conf-file=/app/dataset.conf --input-file=/app/dataset.csv --model-file=/app/dataset.json

The above command will generate a pretrained pipeline using the previously created configuration file and the dataset

Step 3: Run the pipeline on a dataset

python3 osas/main/run_pipeline --conf-file=/app/dataset.conf --model-file=/app/dataset.json --input-file=/app/dataset.csv --output-file=/app/dataset-out.csv

The above command will run the pretrained pipeline on any compatible dataset. In the example we run the pipeline on the training data, but you can use previously unseen data. It will generate an output file with labels and anomaly scores and it will also import your data into Elasticsearch/Kibana. To view the result just use the the web interface.

Pipeline explained

The pipeline sequentially applies all label generators on the raw data, collects the labels and uses an anomaly scoring algorithm to generate anomaly scores. There are two main component classes: LabelGenerator and ScoringAlgorithm.

Label generators

NumericField

  • This type of LabelGenerator handles numerical fields. It computes the mean and standard deviation and generates labels according to the distance between the current value and the mean value (value<=sigma NORMAL, sigma<value<=2sigma BORDERLINE, 2sigma<value OUTLIER)

Params:

  • field_name: what field to look for in the data object

TextField

  • This type of LabelGenerator handles text fields. It builds a n-gram based language model and computes the perplexity of newly observed data. It also holds statistics over the training data (mean and stdev). (perplexity<=sigma NORMAL, sigma<preplexity<=2sigma BORDERLINE, 2perplexity<value OUTLIER)

Params:

  • field_name: What field to look for
  • lm_mode: Type of LM to build: char or token
  • ngram_range: N-gram range to use for computation

MultinomialField

  • This type of LabelGenerator handles fields with discreet value sets. It computes the probability of seeing a specific value and alerts based on relative and absolute thresholds.

Params

  • field_name: What field to use
  • absolute_threshold: Minimum absolute value for occurrences to trigger alert for
  • relative_threshold: Minimum relative value for occurrences to trigger alert for

MultinomialFieldCombiner

  • This type of LabelGenerator handles fields with discreet value sets and build advanced features by combining values across the same dataset entry. It computes the probability of seeing a specific value and alerts based on relative and absolute thresholds.

Params

  • field_names: What fields to combine
  • absolute_threshold: Minimum absolute value for occurrences to trigger alert for
  • relative_threshold: Minimum relative value for occurrences to trigger alert for

KeywordBased

  • This is a rule-based label generators. It applies a simple tokenization procedure on input text, by dropping special characters and numbers and splitting on white-space. It then looks for a specific set of keywords and generates labels accordingly

Params:

  • field_name: What field to use
  • keyword_list: The list of keywords to look for

OSAS has four unsupervised anomaly detection algorithms:

  • IFAnomaly: n-hot encoding, singular value decomposition, isolation forest (IF)

  • LOFAnomaly: n-hot encoding, singular value decomposition, local outlier factor (LOF)

  • SVDAnomaly: n-hot encoding, singular value decomposition, inverted transform, input reconstruction error

  • StatisticalNGramAnomaly: compute label n-gram probabilities, compute anomaly score as a sum of negative log likelihood

Owner
Adobe, Inc.
Open source from Adobe
Adobe, Inc.
NLP - Machine learning

Flipkart-product-reviews NLP - Machine learning About Product reviews is an essential part of an online store like Flipkartā€™s branding and marketing.

Harshith VH 1 Oct 29, 2021
Pretrained Japanese BERT models

Pretrained Japanese BERT models This is a repository of pretrained Japanese BERT models. The models are available in Transformers by Hugging Face. Mod

Inui Laboratory 387 Dec 30, 2022
Tracking Progress in Natural Language Processing

Repository to track the progress in Natural Language Processing (NLP), including the datasets and the current state-of-the-art for the most common NLP tasks.

Sebastian Ruder 21.2k Dec 30, 2022
Installation, test and evaluation of Scribosermo speech-to-text engine

Scribosermo STT Setup Scribosermo is a LGPL licensed, open-source speech recognition engine to "Train fast Speech-to-Text networks in different langua

Florian Quirin 3 Jun 20, 2022
Simple Python library, distributed via binary wheels with few direct dependencies, for easily using wav2vec 2.0 models for speech recognition

Wav2Vec2 STT Python Beta Software Simple Python library, distributed via binary wheels with few direct dependencies, for easily using wav2vec 2.0 mode

David Zurow 22 Dec 29, 2022
Simple tool/toolkit for evaluating NLG (Natural Language Generation) offering various automated metrics.

Simple tool/toolkit for evaluating NLG (Natural Language Generation) offering various automated metrics. Jury offers a smooth and easy-to-use interface. It uses datasets for underlying metric computa

Open Business Software Solutions 129 Jan 06, 2023
A python package for deep multilingual punctuation prediction.

This python library predicts the punctuation of English, Italian, French and German texts. We developed it to restore the punctuation of transcribed spoken language.

Oliver Guhr 27 Dec 22, 2022
Phrase-Based & Neural Unsupervised Machine Translation

Unsupervised Machine Translation This repository contains the original implementation of the unsupervised PBSMT and NMT models presented in Phrase-Bas

Facebook Research 1.5k Dec 28, 2022
Practical Machine Learning with Python

Master the essential skills needed to recognize and solve complex real-world problems with Machine Learning and Deep Learning by leveraging the highly popular Python Machine Learning Eco-system.

Dipanjan (DJ) Sarkar 2k Jan 08, 2023
PhoNLP: A BERT-based multi-task learning toolkit for part-of-speech tagging, named entity recognition and dependency parsing

PhoNLP is a multi-task learning model for joint part-of-speech (POS) tagging, named entity recognition (NER) and dependency parsing. Experiments on Vietnamese benchmark datasets show that PhoNLP prod

VinAI Research 109 Dec 02, 2022
JaQuAD: Japanese Question Answering Dataset

JaQuAD: Japanese Question Answering Dataset for Machine Reading Comprehension (2022, Skelter Labs)

SkelterLabs 84 Dec 27, 2022
A python script that will use hydra to get user and password to login to ssh, ftp, and telnet

Hydra-Auto-Hack A python script that will use hydra to get user and password to login to ssh, ftp, and telnet Project Description This python script w

2 Jan 16, 2022
[EMNLP 2021] Mirror-BERT: Converting Pretrained Language Models to universal text encoders without labels.

[EMNLP 2021] Mirror-BERT: Converting Pretrained Language Models to universal text encoders without labels.

Cambridge Language Technology Lab 61 Dec 10, 2022
This repo contains simple to use, pretrained/training-less models for speaker diarization.

PyDiar This repo contains simple to use, pretrained/training-less models for speaker diarization. Supported Models Binary Key Speaker Modeling Based o

12 Jan 20, 2022
Implementation of ProteinBERT in Pytorch

ProteinBERT - Pytorch (wip) Implementation of ProteinBERT in Pytorch. Original Repository Install $ pip install protein-bert-pytorch Usage import torc

Phil Wang 92 Dec 25, 2022
An open-source NLP library: fast text cleaning and preprocessing.

An open-source NLP library: fast text cleaning and preprocessing

Iaroslav 21 Mar 18, 2022
A paper list of pre-trained language models (PLMs).

Large-scale pre-trained language models (PLMs) such as BERT and GPT have achieved great success and become a milestone in NLP.

RUCAIBox 124 Jan 02, 2023
Diaformer: Automatic Diagnosis via Symptoms Sequence Generation

Diaformer Diaformer: Automatic Diagnosis via Symptoms Sequence Generation (AAAI 2022) Diaformer is an efficient model for automatic diagnosis via symp

Junying Chen 20 Dec 13, 2022