One Stop Anomaly Shop: Anomaly detection using two-phase approach: (a) pre-labeling using statistics, Natural Language Processing and static rules; (b) anomaly scoring using supervised and unsupervised machine learning.

Related tags

Text Data & NLPOSAS
Overview

One Stop Anomaly Shop (OSAS)

Quick start guide

Step 1: Get/build the docker image

Option 1: Use precompiled image (might not reflect latest changes):

docker pull tiberiu44/osas:latest
docker image tag tiberiu44/osas:latest osas:latest

Option 2: Build the image locally

git clone https://github.com/adobe/OSAS.git
cd OSAS
docker build . -f docker/osas-elastic/Dockerfile -t osas:latest

Step 2: After building the docker image you can start OSAS by typing:

docker run -p 8888:8888/tcp -p 5601:5601/tcp -v <ABSOLUTE PATH TO DATA FOLDER>:/app osas

IMPORTANT NOTE: Please modify the above command by adding the absolute path to your datafolder in the appropiate location

After OSAS has started (it might take 1-2 minutes) you can use your browser to access some standard endpoints:

For Debug (in case you need to):

docker run -p 8888:8888/tcp -p 5601:5601/tcp -v <ABSOLUTE PATH TO DATA FOLDER>:/app -ti osas /bin/bash

Building the test pipeline

This guide will take you through all the necessary steps to configure, train and run your own pipeline on your own dataset.

Prerequisite: Add you own CSV dataset into your data-folder (the one provided in the docker run command)

Once you started your docker image, use the OSAS console to gain CLI access to all the tools.

In what follows, we assume that your dataset is called dataset.csv. Please update the commands as necessary in case you use a different name/location.

Be sure you are running scripts in the root folder of OSAS:

cd /osas

Step 1: Build a custom pipeline configuration file - this can be done fully manually on by bootstraping using our conf autogenerator script:

python3 osas/main/autoconfig.py --input-file=/app/dataset.csv --output-file=/app/dataset.conf

The above command will generate a custom configuration file for your dataset. It will try guess field types and optimal combinations between fields. You can edit the generated file (which should be available in the shared data-folder), using your favourite editor.

Standard templates for label generator types are:

[LG_MULTINOMIAL]
generator_type = MultinomialField
field_name = <FIELD_NAME>
absolute_threshold = 10
relative_threshold = 0.1

[LG_TEXT]
generator_type = TextField
field_name = <FIELD_NAME>
lm_mode = char
ngram_range = (3, 5)

[LG_NUMERIC]
generator_type = NumericField
field_name = <FIELD_NAME>

[LG_MUTLINOMIAL_COMBINER]
generator_type = MultinomialFieldCombiner
field_names = ['<FIELD_1>', '<FIELD_2>', ...]
absolute_threshold = 10
relative_threshold = 0.1

[LG_KEYWORD]
generator_type = KeywordBased
field_name = <FIELD_NAME>
keyword_list = ['<KEYWORD_1>', '<KEYWORD_2>', '<KEYWORD_3>', ...]

[LG_REGEX]
generator_type = KnowledgeBased
field_name = <FIELD_NAME>
rules_and_labels_tuple_list = [('<REGEX_1>','<LABEL_1>'), ('<REGEX_2>','<LABEL_2>'), ...]

You can use the above templates to add as many label generators you want. Just make sure that the header IDs are unique in the configuration file.

Step 2: Train the pipeline

python3 osas/main/train_pipeline --conf-file=/app/dataset.conf --input-file=/app/dataset.csv --model-file=/app/dataset.json

The above command will generate a pretrained pipeline using the previously created configuration file and the dataset

Step 3: Run the pipeline on a dataset

python3 osas/main/run_pipeline --conf-file=/app/dataset.conf --model-file=/app/dataset.json --input-file=/app/dataset.csv --output-file=/app/dataset-out.csv

The above command will run the pretrained pipeline on any compatible dataset. In the example we run the pipeline on the training data, but you can use previously unseen data. It will generate an output file with labels and anomaly scores and it will also import your data into Elasticsearch/Kibana. To view the result just use the the web interface.

Pipeline explained

The pipeline sequentially applies all label generators on the raw data, collects the labels and uses an anomaly scoring algorithm to generate anomaly scores. There are two main component classes: LabelGenerator and ScoringAlgorithm.

Label generators

NumericField

  • This type of LabelGenerator handles numerical fields. It computes the mean and standard deviation and generates labels according to the distance between the current value and the mean value (value<=sigma NORMAL, sigma<value<=2sigma BORDERLINE, 2sigma<value OUTLIER)

Params:

  • field_name: what field to look for in the data object

TextField

  • This type of LabelGenerator handles text fields. It builds a n-gram based language model and computes the perplexity of newly observed data. It also holds statistics over the training data (mean and stdev). (perplexity<=sigma NORMAL, sigma<preplexity<=2sigma BORDERLINE, 2perplexity<value OUTLIER)

Params:

  • field_name: What field to look for
  • lm_mode: Type of LM to build: char or token
  • ngram_range: N-gram range to use for computation

MultinomialField

  • This type of LabelGenerator handles fields with discreet value sets. It computes the probability of seeing a specific value and alerts based on relative and absolute thresholds.

Params

  • field_name: What field to use
  • absolute_threshold: Minimum absolute value for occurrences to trigger alert for
  • relative_threshold: Minimum relative value for occurrences to trigger alert for

MultinomialFieldCombiner

  • This type of LabelGenerator handles fields with discreet value sets and build advanced features by combining values across the same dataset entry. It computes the probability of seeing a specific value and alerts based on relative and absolute thresholds.

Params

  • field_names: What fields to combine
  • absolute_threshold: Minimum absolute value for occurrences to trigger alert for
  • relative_threshold: Minimum relative value for occurrences to trigger alert for

KeywordBased

  • This is a rule-based label generators. It applies a simple tokenization procedure on input text, by dropping special characters and numbers and splitting on white-space. It then looks for a specific set of keywords and generates labels accordingly

Params:

  • field_name: What field to use
  • keyword_list: The list of keywords to look for

OSAS has four unsupervised anomaly detection algorithms:

  • IFAnomaly: n-hot encoding, singular value decomposition, isolation forest (IF)

  • LOFAnomaly: n-hot encoding, singular value decomposition, local outlier factor (LOF)

  • SVDAnomaly: n-hot encoding, singular value decomposition, inverted transform, input reconstruction error

  • StatisticalNGramAnomaly: compute label n-gram probabilities, compute anomaly score as a sum of negative log likelihood

Owner
Adobe, Inc.
Open source from Adobe
Adobe, Inc.
An implementation of the Pay Attention when Required transformer

Pay Attention when Required (PAR) Transformer-XL An implementation of the Pay Attention when Required transformer from the paper: https://arxiv.org/pd

7 Aug 11, 2022
BERT has a Mouth, and It Must Speak: BERT as a Markov Random Field Language Model

BERT has a Mouth, and It Must Speak: BERT as a Markov Random Field Language Model

303 Dec 17, 2022
Textlesslib - Library for Textless Spoken Language Processing

textlesslib Textless NLP is an active area of research that aims to extend NLP t

Meta Research 379 Dec 27, 2022
A cross platform OCR Library based on PaddleOCR & OnnxRuntime

A cross platform OCR Library based on PaddleOCR & OnnxRuntime

RapidOCR Team 767 Jan 09, 2023
Line as a Visual Sentence: Context-aware Line Descriptor for Visual Localization

Line as a Visual Sentence with LineTR This repository contains the inference code, pretrained model, and demo scripts of the following paper. It suppo

SungHo Yoon 158 Dec 27, 2022
Python code for ICLR 2022 spotlight paper EViT: Expediting Vision Transformers via Token Reorganizations

Expediting Vision Transformers via Token Reorganizations This repository contain

Youwei Liang 101 Dec 26, 2022
Integrating the Best of TF into PyTorch, for Machine Learning, Natural Language Processing, and Text Generation. This is part of the CASL project: http://casl-project.ai/

Texar-PyTorch is a toolkit aiming to support a broad set of machine learning, especially natural language processing and text generation tasks. Texar

ASYML 726 Dec 30, 2022
The tool to make NLP datasets ready to use

chazutsu photo from Kaikado, traditional Japanese chazutsu maker chazutsu is the dataset downloader for NLP. import chazutsu r = chazutsu.data

chakki 243 Dec 29, 2022
Open solution to the Toxic Comment Classification Challenge

Starter code: Kaggle Toxic Comment Classification Challenge More competitions 🎇 Check collection of public projects 🎁 , where you can find multiple

minerva.ml 153 Jun 22, 2022
PyWorld3 is a Python implementation of the World3 model

The World3 model revisited in Python Install & Hello World3 How to tune your own simulation Licence How to cite PyWorld3 with Bibtex References & ackn

Charles Vanwynsberghe 248 Dec 14, 2022
Library of deep learning models and datasets designed to make deep learning more accessible and accelerate ML research.

Tensor2Tensor Tensor2Tensor, or T2T for short, is a library of deep learning models and datasets designed to make deep learning more accessible and ac

12.9k Jan 07, 2023
AI-powered literature discovery and review engine for medical/scientific papers

AI-powered literature discovery and review engine for medical/scientific papers paperai is an AI-powered literature discovery and review engine for me

NeuML 819 Dec 30, 2022
Sorce code and datasets for "K-BERT: Enabling Language Representation with Knowledge Graph",

K-BERT Sorce code and datasets for "K-BERT: Enabling Language Representation with Knowledge Graph", which is implemented based on the UER framework. R

Weijie Liu 834 Jan 09, 2023
The ibet-Prime security token management system for ibet network.

ibet-Prime The ibet-Prime security token management system for ibet network. Features ibet-Prime is an API service that enables the issuance and manag

BOOSTRY 8 Dec 22, 2022
A Python wrapper for simple offline real-time dictation (speech-to-text) and speaker-recognition using Vosk.

Simple-Vosk A Python wrapper for simple offline real-time dictation (speech-to-text) and speaker-recognition using Vosk. Check out the official Vosk G

2 Jun 19, 2022
This repository contains Python scripts for extracting linguistic features from Filipino texts.

Filipino Text Linguistic Feature Extractors This repository contains scripts for extracting linguistic features from Filipino texts. The scripts were

Joseph Imperial 1 Oct 05, 2021
Command Line Text-To-Speech using Google TTS

cli-tts Thanks to gTTS by @pndurette! This is an interactive command line text-to-speech tool using Google TTS. Just type text and the voice will be p

ReekyStive 3 Nov 11, 2022
SIGIR'22 paper: Axiomatically Regularized Pre-training for Ad hoc Search

Introduction This codebase contains source-code of the Python-based implementation (ARES) of our SIGIR 2022 paper. Chen, Jia, et al. "Axiomatically Re

Jia Chen 17 Nov 09, 2022
Code for text augmentation method leveraging large-scale language models

HyperMix Code for our paper GPT3Mix and conducting classification experiments using GPT-3 prompt-based data augmentation. Getting Started Installing P

NAVER AI 47 Dec 20, 2022
The following links explain a bit the idea of semantic search and how search mechanisms work by doing retrieve and rerank

Main Idea The following links explain a bit the idea of semantic search and how search mechanisms work by doing retrieve and rerank Semantic Search Re

Sergio Arnaud Gomez 2 Jan 28, 2022