Python code for ICLR 2022 spotlight paper EViT: Expediting Vision Transformers via Token Reorganizations

Related tags

Text Data & NLPevit
Overview

Expediting Vision Transformers via Token Reorganizations

This repository contains PyTorch evaluation code, training code and pretrained EViT models for the ICLR 2022 Spotlight paper:

Not All Patches are What You Need: Expediting Vision Transformers via Token Reorganizations

Youwei Liang, Chongjian Ge, Zhan Tong, Yibing Song, Jue Wang, Pengtao Xie

The proposed EViT models obtain competitive tradeoffs in terms of speed / precision:

EViT

If you use this code for a paper please cite:

@inproceedings{liang2022evit,
title={Not All Patches are What You Need: Expediting Vision Transformers via Token Reorganizations},
author={Youwei Liang and Chongjian Ge and Zhan Tong and Yibing Song and Jue Wang and Pengtao Xie},
booktitle={International Conference on Learning Representations},
year={2022},
url={https://openreview.net/forum?id=BjyvwnXXVn_}
}

Model Zoo

We provide EViT-DeiT-S models pretrained on ImageNet 2012.

Token fusion Keep rate [email protected] [email protected] #Params URL
0.9 79.8 95.0 22.1M model
0.8 79.8 94.9 22.1M model
0.7 79.5 94.8 22.1M model
0.6 78.9 94.5 22.1M model
0.5 78.5 94.2 22.1M model
0.9 79.9 94.9 22.1M model
0.8 79.7 94.8 22.1M model
0.7 79.4 94.7 22.1M model
0.6 79.1 94.5 22.1M model
0.5 78.4 94.1 22.1M model

Preparation

The reported results in the paper were obtained with models trained with 16 NVIDIA A100 GPUs using Python3.6 and the following packages

torch==1.9.0
torchvision==0.10.0
timm==0.4.12
tensorboardX==2.4
torchprofile==0.0.4
lmdb==1.2.1
pyarrow==5.0.0

These packages can be installed by running pip install -r requirements.txt.

Data preparation

Download and extract ImageNet train and val images from http://image-net.org/. The directory structure is the standard layout for the torchvision datasets.ImageFolder, and the training and validation data is expected to be in the train/ folder and val folder respectively:

/path/to/imagenet/
  train/
    class1/
      img1.jpeg
    class2/
      img2.jpeg
  val/
    class1/
      img3.jpeg
    class/2
      img4.jpeg

We use the same datasets as in DeiT. You can optionally use an LMDB dataset for ImageNet by building it using folder2lmdb.py and passing --use-lmdb to main.py, which may speed up data loading.

Usage

First, clone the repository locally:

git clone https://github.com/youweiliang/evit.git

Change directory to the cloned repository by running cd evit, install necessary packages, and prepare the datasets.

Training

To train EViT/0.7-DeiT-S on ImageNet, set the datapath (path to dataset) and logdir (logging directory) in run_code.sh properly and run bash ./run_code.sh (--nproc_per_node should be modified if necessary). Note that the batch size in the paper is 16x128=2048.

Set --base_keep_rate in run_code.sh to use a different keep rate, and set --fuse_token to configure whether to use inattentive token fusion.

Training/Finetuning on higher resolution images

To training on images with a (higher) resolution h, set --input-size h in run_code.sh.

Multinode training

Please refer to DeiT for multinode training.

Finetuning

First set the datapath, logdir, and ckpt (the model checkpoint for finetuning) in run_code.sh, and then run bash ./finetune.sh.

Evaluation

To evaluate a pre-trained EViT/0.7-DeiT-S model on ImageNet val with a single GPU run (replacing checkpoint with the actual file):

python3 main.py --model deit_small_patch16_shrink_base --fuse_token --base_keep_rate 0.7 --eval --resume checkpoint --data-path /path/to/imagenet

You can also pass --dist-eval to use multiple GPUs for evaluation.

License

This repository is released under the Apache 2.0 license as found in the LICENSE file.

Acknowledgement

We would like to think the authors of DeiT, based on which this project is built.

Owner
Youwei Liang
Youwei Liang
C.J. Hutto 3.8k Dec 30, 2022
Semi-automated vocabulary generation from semantic vector models

vec2word Semi-automated vocabulary generation from semantic vector models This script generates a list of potential conlang word forms along with asso

9 Nov 25, 2022
Sequence-to-Sequence Framework in PyTorch

nmtpytorch allows training of various end-to-end neural architectures including but not limited to neural machine translation, image captioning and au

LIUM 395 Nov 21, 2022
CCQA A New Web-Scale Question Answering Dataset for Model Pre-Training

CCQA: A New Web-Scale Question Answering Dataset for Model Pre-Training This is the official repository for the code and models of the paper CCQA: A N

Meta Research 29 Nov 30, 2022
PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

VAENAR-TTS - PyTorch Implementation PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

Keon Lee 67 Nov 14, 2022
[NeurIPS 2021] Code for Learning Signal-Agnostic Manifolds of Neural Fields

Learning Signal-Agnostic Manifolds of Neural Fields This is the uncleaned code for the paper Learning Signal-Agnostic Manifolds of Neural Fields. The

60 Dec 12, 2022
A desktop GUI providing an audio interface for GPT3.

Jabberwocky neil_degrasse_tyson_with_audio.mp4 Project Description This GUI provides an audio interface to GPT-3. My main goal was to provide a conven

16 Nov 27, 2022
GooAQ 🥑 : Google Answers to Google Questions!

This repository contains the code/data accompanying our recent work on long-form question answering.

AI2 112 Nov 06, 2022
Behavioral Testing of Clinical NLP Models

Behavioral Testing of Clinical NLP Models This repository contains code for testing the behavior of clinical prediction models based on patient letter

Betty van Aken 2 Sep 20, 2022
This github repo is for Neurips 2021 paper, NORESQA A Framework for Speech Quality Assessment using Non-Matching References.

NORESQA: Speech Quality Assessment using Non-Matching References This is a Pytorch implementation for using NORESQA. It contains minimal code to predi

Meta Research 36 Dec 08, 2022
Baseline code for Korean open domain question answering(ODQA)

Open-Domain Question Answering(ODQA)는 다양한 주제에 대한 문서 집합으로부터 자연어 질의에 대한 답변을 찾아오는 task입니다. 이때 사용자 질의에 답변하기 위해 주어지는 지문이 따로 존재하지 않습니다. 따라서 사전에 구축되어있는 Knowl

VUMBLEB 69 Nov 04, 2022
Practical Machine Learning with Python

Master the essential skills needed to recognize and solve complex real-world problems with Machine Learning and Deep Learning by leveraging the highly popular Python Machine Learning Eco-system.

Dipanjan (DJ) Sarkar 2k Jan 08, 2023
DataCLUE: 国内首个以数据为中心的AI测评(含模型分析报告)

DataCLUE 以数据为中心的AI测评(DataCLUE) DataCLUE: A Chinese Data-centric Language Evaluation Benchmark 内容导引 章节 描述 简介 介绍以数据为中心的AI测评(DataCLUE)的背景 任务描述 任务描述 实验结果

CLUE benchmark 135 Dec 22, 2022
:hot_pepper: R²SQL: "Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing." (AAAI 2021)

R²SQL The PyTorch implementation of paper Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing. (AAAI 2021) Requirement

huybery 60 Dec 31, 2022
Flexible interface for high-performance research using SOTA Transformers leveraging Pytorch Lightning, Transformers, and Hydra.

Flexible interface for high performance research using SOTA Transformers leveraging Pytorch Lightning, Transformers, and Hydra. What is Lightning Tran

Pytorch Lightning 581 Dec 21, 2022
SimBERT升级版(SimBERTv2)!

RoFormer-Sim RoFormer-Sim,又称SimBERTv2,是我们之前发布的SimBERT模型的升级版。 介绍 https://kexue.fm/archives/8454 训练 tensorflow 1.14 + keras 2.3.1 + bert4keras 0.10.6 下载

317 Dec 23, 2022
Wrapper to display a script output or a text file content on the desktop in sway or other wlroots-based compositors

nwg-wrapper This program is a part of the nwg-shell project. This program is a GTK3-based wrapper to display a script output, or a text file content o

Piotr Miller 94 Dec 27, 2022
내부 작업용 django + vue(vuetify) boilerplate. 짠 하면 돌아감.

Pocket Galaxy 아주 간단한 개인용, 혹은 내부용 툴을 만들어야하는데 이왕이면 웹이 편하죠? 그럴때를 위해 만들어둔 django와 vue(vuetify)로 이뤄진 boilerplate 입니다. 각 폴더에 있는 설명서대로 실행을 시키면 일단 당장 뭔가가 돌아갑니

Jamie J. Seol 16 Dec 03, 2021
Pattern Matching in Python

Pattern Matching finalmente chega no Python 3.10. E daí? "Pattern matching", ou "correspondência de padrões" como é conhecido no Brasil. Algumas pesso

Fabricio Werneck 6 Feb 16, 2022
This project consists of data analysis and data visualization (done using python)of all IPL seasons from 2008 to 2019 and answering the most asked questions about the IPL.

IPL-data-analysis This project consists of data analysis and data visualization of all IPL seasons from 2008 to 2019 and answering the most asked ques

Sivateja A T 2 Feb 08, 2022