Almost State-of-the-art Text Generation library

Overview

Ps: we are adding transformer model soon

Text Gen 🐐

Downloads python tensorflow PyPI

Almost State-of-the-art Text Generation library

Text gen is a python library that allow you build a custom text generation model with ease 😄 Something sweet built with Tensorflow and Pytorch(coming soon) - This is the brain of Rosalove ai (https://rosalove.xyz/)

How to use it

Install text-gen

pip install -U text-gen

import the library

from text_gen import ten_textgen as ttg

Load your data. your data must be in a text format.

Download the example data from the example folder

load data

data = 'rl.csv'
text = ttg.loaddata(data)

build our Model Architeture

pipeline = ttg.tentext(text)
seq_text = pipeline.sequence(padding_method = 'pre')
configg = pipeline.configmodel(seq_text, lstmlayer = 128, activation = 'softmax', dropout = 0.25)

train model

model_history = pipeline.fit(loss = 'categorical_crossentropy', optimizer = 'adam', batch = 300, metrics = 'accuracy', epochs = 500, verbose = 0, patience = 10)

generate text using the phrase

pipeline.predict('hello love', word_length = 200, segment = True)

plot loss and accuracy

pipeline.plot_loss_accuracy()

Hyper parameter optimization

Tune your model to know the best optimizer, activation method to use.

pipeline.hyper_params(epochs = 500)
pipeline.saveModel('model')

use a saved model for prediction

#the corpus is the train text file
ttg.load_model_predict(corpus = corpus, padding_method = 'pre', modelname = '../input/model2/model2textgen.h5', sample_text = 'yo yo', word_length = 100)

Give us a star 🐉

If you want to contribute, take a look at the issues and the Futurework.md file

Contributors

Comments
  • use pipenv for managing dependencies

    use pipenv for managing dependencies

    Consider using (pipenv)[https://pypi.org/project/pipenv/] to pin your dependencies. This would allow contributors to easily reproduce the project without messing up the dependencies and its also good on the long run for maintainability

    opened by paularah 1
  • [Snyk] Security upgrade pillow from 6.2.2 to 8.3.2

    [Snyk] Security upgrade pillow from 6.2.2 to 8.3.2

    Snyk has created this PR to fix one or more vulnerable packages in the `pip` dependencies of this project.

    Changes included in this PR

    • Changes to the following files to upgrade the vulnerable dependencies to a fixed version:
      • requirements.txt

    Vulnerabilities that will be fixed

    By pinning:

    Severity | Priority Score (*) | Issue | Upgrade | Breaking Change | Exploit Maturity :-------------------------:|-------------------------|:-------------------------|:-------------------------|:-------------------------|:------------------------- high severity | 661/1000
    Why? Recently disclosed, Has a fix available, CVSS 7.5 | Regular Expression Denial of Service (ReDoS)
    SNYK-PYTHON-PILLOW-1319443 | pillow:
    6.2.2 -> 8.3.2
    | No | No Known Exploit

    (*) Note that the real score may have changed since the PR was raised.

    Some vulnerabilities couldn't be fully fixed and so Snyk will still find them when the project is tested again. This may be because the vulnerability existed within more than one direct dependency, but not all of the effected dependencies could be upgraded.

    Check the changes in this PR to ensure they won't cause issues with your project.


    Note: You are seeing this because you or someone else with access to this repository has authorized Snyk to open fix PRs.

    For more information: 🧐 View latest project report

    🛠 Adjust project settings

    📚 Read more about Snyk's upgrade and patch logic

    opened by snyk-bot 0
  • Read on how to create a simple python library

    Read on how to create a simple python library

    https://towardsdatascience.com/how-to-build-your-first-python-package-6a00b02635c9

    https://medium.com/analytics-vidhya/how-to-create-a-python-library-7d5aea80cc3f

    opened by Emekaborisama 0
  • [Snyk] Security upgrade wheel from 0.30.0 to 0.38.0

    [Snyk] Security upgrade wheel from 0.30.0 to 0.38.0

    This PR was automatically created by Snyk using the credentials of a real user.


    Snyk has created this PR to fix one or more vulnerable packages in the `pip` dependencies of this project.

    Changes included in this PR

    • Changes to the following files to upgrade the vulnerable dependencies to a fixed version:
      • requirements.txt
    ⚠️ Warning
    torchvision 0.5.0 requires pillow, which is not installed.
    tensorflow 1.14.0 requires protobuf, which is not installed.
    tensorflow-serving-api 1.12.0 requires protobuf, which is not installed.
    tensorboard 1.14.0 requires protobuf, which is not installed.
    GPyOpt 1.2.6 requires GPy, which is not installed.
    
    

    Vulnerabilities that will be fixed

    By pinning:

    Severity | Priority Score (*) | Issue | Upgrade | Breaking Change | Exploit Maturity :-------------------------:|-------------------------|:-------------------------|:-------------------------|:-------------------------|:------------------------- medium severity | 551/1000
    Why? Recently disclosed, Has a fix available, CVSS 5.3 | Regular Expression Denial of Service (ReDoS)
    SNYK-PYTHON-WHEEL-3180413 | wheel:
    0.30.0 -> 0.38.0
    | No | No Known Exploit

    (*) Note that the real score may have changed since the PR was raised.

    Some vulnerabilities couldn't be fully fixed and so Snyk will still find them when the project is tested again. This may be because the vulnerability existed within more than one direct dependency, but not all of the affected dependencies could be upgraded.

    Check the changes in this PR to ensure they won't cause issues with your project.


    Note: You are seeing this because you or someone else with access to this repository has authorized Snyk to open fix PRs.

    For more information: 🧐 View latest project report

    🛠 Adjust project settings

    📚 Read more about Snyk's upgrade and patch logic


    Learn how to fix vulnerabilities with free interactive lessons:

    🦉 Regular Expression Denial of Service (ReDoS)

    opened by Emekaborisama 0
  • [Snyk] Security upgrade wheel from 0.30.0 to 0.38.0

    [Snyk] Security upgrade wheel from 0.30.0 to 0.38.0

    This PR was automatically created by Snyk using the credentials of a real user.


    Snyk has created this PR to fix one or more vulnerable packages in the `pip` dependencies of this project.

    Changes included in this PR

    • Changes to the following files to upgrade the vulnerable dependencies to a fixed version:
      • requirements.txt
    ⚠️ Warning
    torchvision 0.5.0 requires pillow, which is not installed.
    tensorflow 1.14.0 requires grpcio, which is not installed.
    tensorflow 1.14.0 requires protobuf, which is not installed.
    tensorboard 1.14.0 requires protobuf, which is not installed.
    tensorboard 1.14.0 requires grpcio, which is not installed.
    parameter-sherpa 1.0.6 requires pymongo, which is not installed.
    parameter-sherpa 1.0.6 requires GPyOpt, which is not installed.
    
    

    Vulnerabilities that will be fixed

    By pinning:

    Severity | Priority Score (*) | Issue | Upgrade | Breaking Change | Exploit Maturity :-------------------------:|-------------------------|:-------------------------|:-------------------------|:-------------------------|:------------------------- medium severity | 551/1000
    Why? Recently disclosed, Has a fix available, CVSS 5.3 | Regular Expression Denial of Service (ReDoS)
    SNYK-PYTHON-WHEEL-3092128 | wheel:
    0.30.0 -> 0.38.0
    | No | No Known Exploit

    (*) Note that the real score may have changed since the PR was raised.

    Some vulnerabilities couldn't be fully fixed and so Snyk will still find them when the project is tested again. This may be because the vulnerability existed within more than one direct dependency, but not all of the affected dependencies could be upgraded.

    Check the changes in this PR to ensure they won't cause issues with your project.


    Note: You are seeing this because you or someone else with access to this repository has authorized Snyk to open fix PRs.

    For more information: 🧐 View latest project report

    🛠 Adjust project settings

    📚 Read more about Snyk's upgrade and patch logic


    Learn how to fix vulnerabilities with free interactive lessons:

    🦉 Regular Expression Denial of Service (ReDoS)

    opened by Emekaborisama 0
  • [Snyk] Fix for 23 vulnerabilities

    [Snyk] Fix for 23 vulnerabilities

    Snyk has created this PR to fix one or more vulnerable packages in the `pip` dependencies of this project.

    Changes included in this PR

    • Changes to the following files to upgrade the vulnerable dependencies to a fixed version:
      • requirements.txt
    ⚠️ Warning
    torchvision 0.5.0 requires pillow, which is not installed.
    parameter-sherpa 1.0.6 requires scikit-learn, which is not installed.
    GPy 1.10.0 requires paramz, which is not installed.
    GPy 1.10.0 requires cython, which is not installed.
    GPy 1.10.0 has requirement scipy<1.5.0,>=1.3.0, but you have scipy 1.2.3.
    
    

    Vulnerabilities that will be fixed

    By pinning:

    Severity | Priority Score (*) | Issue | Upgrade | Breaking Change | Exploit Maturity :-------------------------:|-------------------------|:-------------------------|:-------------------------|:-------------------------|:------------------------- high severity | 589/1000
    Why? Has a fix available, CVSS 7.5 | Out-of-bounds Read
    SNYK-PYTHON-PILLOW-1055461 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit high severity | 589/1000
    Why? Has a fix available, CVSS 7.5 | Out-of-bounds Read
    SNYK-PYTHON-PILLOW-1055462 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit medium severity | 509/1000
    Why? Has a fix available, CVSS 5.9 | Out-of-bounds Write
    SNYK-PYTHON-PILLOW-1059090 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit high severity | 589/1000
    Why? Has a fix available, CVSS 7.5 | Out-of-bounds Read
    SNYK-PYTHON-PILLOW-1080635 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit high severity | 589/1000
    Why? Has a fix available, CVSS 7.5 | Regular Expression Denial of Service (ReDoS)
    SNYK-PYTHON-PILLOW-1080654 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit high severity | 589/1000
    Why? Has a fix available, CVSS 7.5 | Denial of Service (DoS)
    SNYK-PYTHON-PILLOW-1081494 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit high severity | 589/1000
    Why? Has a fix available, CVSS 7.5 | Denial of Service (DoS)
    SNYK-PYTHON-PILLOW-1081501 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit high severity | 589/1000
    Why? Has a fix available, CVSS 7.5 | Denial of Service (DoS)
    SNYK-PYTHON-PILLOW-1081502 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit high severity | 654/1000
    Why? Has a fix available, CVSS 8.8 | Heap-based Buffer Overflow
    SNYK-PYTHON-PILLOW-1082329 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit high severity | 589/1000
    Why? Has a fix available, CVSS 7.5 | Insufficient Validation
    SNYK-PYTHON-PILLOW-1082750 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit high severity | 589/1000
    Why? Has a fix available, CVSS 7.5 | Denial of Service (DoS)
    SNYK-PYTHON-PILLOW-1090584 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit high severity | 589/1000
    Why? Has a fix available, CVSS 7.5 | Denial of Service (DoS)
    SNYK-PYTHON-PILLOW-1090586 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit high severity | 589/1000
    Why? Has a fix available, CVSS 7.5 | Denial of Service (DoS)
    SNYK-PYTHON-PILLOW-1090587 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit high severity | 589/1000
    Why? Has a fix available, CVSS 7.5 | Denial of Service (DoS)
    SNYK-PYTHON-PILLOW-1090588 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit high severity | 589/1000
    Why? Has a fix available, CVSS 7.5 | Out-of-bounds Read
    SNYK-PYTHON-PILLOW-1292150 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit high severity | 589/1000
    Why? Has a fix available, CVSS 7.5 | Out-of-bounds Read
    SNYK-PYTHON-PILLOW-1292151 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit medium severity | 566/1000
    Why? Recently disclosed, Has a fix available, CVSS 5.6 | Buffer Overflow
    SNYK-PYTHON-PILLOW-1316216 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit medium severity | 414/1000
    Why? Has a fix available, CVSS 4 | Out-of-Bounds
    SNYK-PYTHON-PILLOW-574573 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit medium severity | 414/1000
    Why? Has a fix available, CVSS 4 | Out-of-bounds Read
    SNYK-PYTHON-PILLOW-574574 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit medium severity | 414/1000
    Why? Has a fix available, CVSS 4 | Out-of-bounds Read
    SNYK-PYTHON-PILLOW-574575 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit medium severity | 414/1000
    Why? Has a fix available, CVSS 4 | Out-of-bounds Read
    SNYK-PYTHON-PILLOW-574576 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit medium severity | 469/1000
    Why? Has a fix available, CVSS 5.1 | Buffer Overflow
    SNYK-PYTHON-PILLOW-574577 | pillow:
    6.2.2 -> 8.1.0
    | No | No Known Exploit low severity | 506/1000
    Why? Proof of Concept exploit, Has a fix available, CVSS 3.7 | Regular Expression Denial of Service (ReDoS)
    SNYK-PYTHON-SCIKITLEARN-1079100 | scikit-learn:
    0.20.4 -> 0.24.2
    | No | Proof of Concept

    (*) Note that the real score may have changed since the PR was raised.

    Some vulnerabilities couldn't be fully fixed and so Snyk will still find them when the project is tested again. This may be because the vulnerability existed within more than one direct dependency, but not all of the effected dependencies could be upgraded.

    Check the changes in this PR to ensure they won't cause issues with your project.


    Note: You are seeing this because you or someone else with access to this repository has authorized Snyk to open fix PRs.

    For more information: 🧐 View latest project report

    🛠 Adjust project settings

    📚 Read more about Snyk's upgrade and patch logic

    opened by snyk-bot 0
Releases(v1.9.0)
Owner
Emeka boris ama
Machine Learning Engineer, Data Scientist, Youtuber and Advocacy
Emeka boris ama
DataCLUE: 国内首个以数据为中心的AI测评(含模型分析报告)

DataCLUE 以数据为中心的AI测评(DataCLUE) DataCLUE: A Chinese Data-centric Language Evaluation Benchmark 内容导引 章节 描述 简介 介绍以数据为中心的AI测评(DataCLUE)的背景 任务描述 任务描述 实验结果

CLUE benchmark 135 Dec 22, 2022
ADCS - Automatic Defect Classification System (ADCS) for SSMC

Table of Contents Table of Contents ADCS Overview Summary Operator's Guide Demo System Design System Logic Training Mode Production System Flow Folder

Tam Zher Min 2 Jun 24, 2022
Data and evaluation code for the paper WikiNEuRal: Combined Neural and Knowledge-based Silver Data Creation for Multilingual NER (EMNLP 2021).

Data and evaluation code for the paper WikiNEuRal: Combined Neural and Knowledge-based Silver Data Creation for Multilingual NER. @inproceedings{tedes

Babelscape 40 Dec 11, 2022
PyTorch implementation of Tacotron speech synthesis model.

tacotron_pytorch PyTorch implementation of Tacotron speech synthesis model. Inspired from keithito/tacotron. Currently not as much good speech quality

Ryuichi Yamamoto 279 Dec 09, 2022
Model parallel transformers in JAX and Haiku

Table of contents Mesh Transformer JAX Updates Pretrained Models GPT-J-6B Links Acknowledgments License Model Details Zero-Shot Evaluations Architectu

Ben Wang 4.9k Jan 04, 2023
A spaCy wrapper of OpenTapioca for named entity linking on Wikidata

spaCyOpenTapioca A spaCy wrapper of OpenTapioca for named entity linking on Wikidata. Table of contents Installation How to use Local OpenTapioca Vizu

Universitätsbibliothek Mannheim 80 Jan 03, 2023
Beyond Accuracy: Behavioral Testing of NLP models with CheckList

CheckList This repository contains code for testing NLP Models as described in the following paper: Beyond Accuracy: Behavioral Testing of NLP models

Marco Tulio Correia Ribeiro 1.8k Dec 28, 2022
FireFlyer Record file format, writer and reader for DL training samples.

FFRecord The FFRecord format is a simple format for storing a sequence of binary records developed by HFAiLab, which supports random access and Linux

77 Jan 04, 2023
This is a MD5 password/passphrase brute force tool

CROWES-PASS-CRACK-TOOl This is a MD5 password/passphrase brute force tool How to install: Do 'git clone https://github.com/CROW31/CROWES-PASS-CRACK-TO

9 Mar 02, 2022
Tokenizer - Module python d'analyse syntaxique et de grammaire, tokenization

Tokenizer Le Tokenizer est un analyseur lexicale, il permet, comme Flex and Yacc par exemple, de tokenizer du code, c'est à dire transformer du code e

Manolo 1 Aug 15, 2022
Material for GW4SHM workshop, 16/03/2022.

GW4SHM Workshop Wednesday, 16th March 2022 (13:00 – 15:15 GMT): Presented by: Dr. Rhodri Nelson, Imperial College London Project website: https://www.

Devito Codes 1 Mar 16, 2022
Course project of [email protected]

NaiveMT Prepare Clone this repository git clone [email protected]:Poeroz/NaiveMT.git

Poeroz 2 Apr 24, 2022
Poetry PEP 517 Build Backend & Core Utilities

Poetry Core A PEP 517 build backend implementation developed for Poetry. This project is intended to be a light weight, fully compliant, self-containe

Poetry 293 Jan 02, 2023
A curated list of FOSS tools to improve the Hacker News experience

Awesome-Hackernews Hacker News is a social news website focusing on computer technologies, hacking and startups. It promotes any content likely to "gr

Bryton Lacquement 141 Dec 27, 2022
Natural Language Processing

NLP Natural Language Processing apps Multilingual_NLP.py start #This script is demonstartion of Mul

Ritesh Sharma 1 Oct 31, 2021
Pervasive Attention: 2D Convolutional Networks for Sequence-to-Sequence Prediction

This is a fork of Fairseq(-py) with implementations of the following models: Pervasive Attention - 2D Convolutional Neural Networks for Sequence-to-Se

Maha 490 Dec 15, 2022
Unofficial implementation of Google's FNet: Mixing Tokens with Fourier Transforms

FNet: Mixing Tokens with Fourier Transforms Pytorch implementation of Fnet : Mixing Tokens with Fourier Transforms. Citation: @misc{leethorp2021fnet,

Rishikesh (ऋषिकेश) 217 Dec 05, 2022
NLP-based analysis of poor Chinese movie reviews on Douban

douban_embedding 豆瓣中文影评差评分析 1. NLP NLP(Natural Language Processing)是指自然语言处理,他的目的是让计算机可以听懂人话。 下面是我将2万条豆瓣影评训练之后,随意输入一段新影评交给神经网络,最终AI推断出的结果。 "很好,演技不错

3 Apr 15, 2022
Trains an OpenNMT PyTorch model and SentencePiece tokenizer.

Trains an OpenNMT PyTorch model and SentencePiece tokenizer. Designed for use with Argos Translate and LibreTranslate.

Argos Open Tech 61 Dec 13, 2022
Text Classification in Turkish Texts with Bert

You can watch the details of the project on my youtube channel Project Interface Project Second Interface Goal= Correctly guessing the classification

42 Dec 31, 2022