Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition

Related tags

Text Data & NLPsew
Overview

SEW (Squeezed and Efficient Wav2vec)

made-with-python License: MIT

The repo contains the code of the paper "Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition" by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q Weinberger, and Yoav Artzi.

Model Checkpoints

Unsupervisedly Pre-trained on LibriSpeech 960h

Model Pre-training updates Dataset Model
W2V2-tiny 100K Librispeech 960h download
W2V2-small 100K Librispeech 960h download
W2V2-mid 100K Librispeech 960h download
W2V2-base 100K Librispeech 960h download
SEW-tiny 100K Librispeech 960h download
SEW-small 100K Librispeech 960h download
SEW-mid 100K Librispeech 960h download
SEW-D-tiny 100K Librispeech 960h download
SEW-D-small 100K Librispeech 960h download
SEW-D-mid 100K Librispeech 960h download
SEW-D-mid (k127) 100K Librispeech 960h download
SEW-D-base 100K Librispeech 960h download
SEW-D-base+ 100K Librispeech 960h download
SEW-D-mid 400K Librispeech 960h download
SEW-D-mid (k127) 400K Librispeech 960h download
SEW-D-base+ 400K Librispeech 960h download

ASR model fine-tuned on LibriSpeech train-clean 100h

Model Pre-training updates Finetuning split Model
SEW-tiny 100K 100h download
SEW-D-tiny 100K 100h download
SEW-D-mid 400K 100h download
SEW-D-mid (k127) 400K 100h download
SEW-D-base+ 400K 100h download

Usage

Dependencies

The code is tested with fairseq commit 05255f9, deberta commit bf17ca4 and the following packages.

torch==1.8.0
torchaudio==0.8.0
tqdm==4.49.0
Hydra==2.5
hydra-core==1.0.4
fvcore==0.1.5.post20210330
omegaconf==2.0.5
einops==0.3.0
fire==0.2.1

Apex

Please install NVIDIA's apex with

git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" \
  --global-option="--deprecated_fused_adam" --global-option="--xentropy" \
  --global-option="--fast_multihead_attn" ./

wav2letter decoder

Currently, we are decoding with wav2letter v0.2 python binding at commit 96f5f9d Please install the python binding here https://github.com/flashlight/wav2letter/tree/96f5f9d3b41e01af0a031ee0d2604acd9ef3b1b0/bindings/python The newest commit d5a93f0 in v0.2 branch leads to worse WER for wav2vec 2.0 baselines.

Installation

git clone https://github.com/asappresearch/sew.git
cd sew 
pip install -e .

Pre-training

Pre-training SEW models

Run the following command where $model_size can be tiny, small, or mid, and $ngpu is tne number of GPUs you want to use.

bash scripts/pt-sew.sh $model_size $ngpu

Pre-training SEW-D models

bash scripts/pt-sew-d.sh $model_size $ngpu

where $model_size can be tiny, small, mid, mid-k127, base, or base+.

Fine-tuning

Run the following script to fine-tune a model with the hyperparameters from wav2vec 2.0.

bash scripts/ft-model.sh $pre_trained_model $split $ngpu

where $pre_trained_model can be either a W2V2, SEW, or a SEW-D model checkpoint and $split can be 10m, 1h, 10h, or 100h.

Here we also provide a set of hyperparameters which sets all dropouts the same as the pre-training stage, and we found it to be more stable.

bash scripts/ft-model-stable.sh $pre_trained_model $split $ngpu

If you see out of GPU memory error, please scale down the dataset.max_tokens and scale up the optimization.update_freq in scripts/ft-model.sh. For example modifying these lines

  dataset.max_tokens=3200000 \
  optimization.update_freq="[$((8 / $ngpu))]" \

to

  dataset.max_tokens=1600000 \
  optimization.update_freq="[$((16 / $ngpu))]" \

which reduces the batch size and increases the gradient accumulation steps in order to use less GPU memory.

Evaluation

  1. Please run this script to prepare the official LibriSpeech 4-gram language model.
bash scripts/prepare_librispeech_lm.sh $kenlm_build_bin

where $kenlm_build_bin is the folder that contains the KenLM build_binary executable file (e.g. /home/user/kenlm/build/bin).

  1. Then run this script to evaluate a pre-trained ASR model
python tools/eval_w2v.py tunelm --subsets '["dev-clean", "dev-other", "test-clean", "test-other"]' --model $asr_checkpoint
You might also like...
Neural building blocks for speaker diarization: speech activity detection, speaker change detection, overlapped speech detection, speaker embedding
Neural building blocks for speaker diarization: speech activity detection, speaker change detection, overlapped speech detection, speaker embedding

⚠️ Checkout develop branch to see what is coming in pyannote.audio 2.0: a much smaller and cleaner codebase Python-first API (the good old pyannote-au

PyTorch implementation of Microsoft's text-to-speech system FastSpeech 2: Fast and High-Quality End-to-End Text to Speech.
PyTorch implementation of Microsoft's text-to-speech system FastSpeech 2: Fast and High-Quality End-to-End Text to Speech.

An implementation of Microsoft's "FastSpeech 2: Fast and High-Quality End-to-End Text to Speech"

Simple Speech to Text, Text to Speech

Simple Speech to Text, Text to Speech 1. Download Repository Opsi 1 Download repository ini, extract di lokasi yang diinginkan Opsi 2 Jika sudah famil

Code for ACL 2022 main conference paper "STEMM: Self-learning with Speech-text Manifold Mixup for Speech Translation".

STEMM: Self-learning with Speech-Text Manifold Mixup for Speech Translation This is a PyTorch implementation for the ACL 2022 main conference paper ST

Unsupervised intent recognition

INTENT author: steeve LAQUITAINE description: deployment pattern: currently batch only Setup & run git clone https://github.com/slq0/intent.git bash

Implementaion of our ACL 2022 paper Bridging the Data Gap between Training and Inference for Unsupervised Neural Machine Translation

Bridging the Data Gap between Training and Inference for Unsupervised Neural Machine Translation This is the implementaion of our paper: Bridging the

PhoNLP: A BERT-based multi-task learning toolkit for part-of-speech tagging, named entity recognition and dependency parsing
PhoNLP: A BERT-based multi-task learning toolkit for part-of-speech tagging, named entity recognition and dependency parsing

PhoNLP is a multi-task learning model for joint part-of-speech (POS) tagging, named entity recognition (NER) and dependency parsing. Experiments on Vietnamese benchmark datasets show that PhoNLP produces state-of-the-art results, outperforming a single-task learning approach that fine-tunes the pre-trained Vietnamese language model PhoBERT for each task independently.

Bidirectional LSTM-CRF and ELMo for Named-Entity Recognition, Part-of-Speech Tagging and so on.
Bidirectional LSTM-CRF and ELMo for Named-Entity Recognition, Part-of-Speech Tagging and so on.

anaGo anaGo is a Python library for sequence labeling(NER, PoS Tagging,...), implemented in Keras. anaGo can solve sequence labeling tasks such as nam

Bidirectional LSTM-CRF and ELMo for Named-Entity Recognition, Part-of-Speech Tagging and so on.
Bidirectional LSTM-CRF and ELMo for Named-Entity Recognition, Part-of-Speech Tagging and so on.

anaGo anaGo is a Python library for sequence labeling(NER, PoS Tagging,...), implemented in Keras. anaGo can solve sequence labeling tasks such as nam

Comments
  • 8000 sample rate audio

    8000 sample rate audio

    Hello there,

    I'm trying to train on 8000 Hz sample rate audio dataset. Is it enough to simply add task.sample_rate=8000 to the fairseq command or there are additional config changes that I should make?

    I would much appreciate any advice

    Thank you

    opened by Mega4alik 0
  • How to train using not English Languages

    How to train using not English Languages

    Hi! Thank you for the awesome model!

    We are very interested in your project and we try to use the sew for Japanese Language. When we train the model, should we use these scripts? Thanks! https://github.com/asappresearch/sew/tree/master/scripts

    opened by jigenji 1
  • :bug: Fix padding mask calculation

    :bug: Fix padding mask calculation

    This PR updates the padding mask calculation to be the same as the one in the reference Wav2Vec2 implementation (same commit as listed in SEW's README): https://github.com/pytorch/fairseq/blob/05255f96410e5b1eaf3bf59b767d5b4b7e2c3a35/fairseq/models/wav2vec/wav2vec2.py#L477

    For more details on how and why it was fixed in fairseq, check out this PR by @patrickvonplaten https://github.com/pytorch/fairseq/pull/3228

    opened by anton-l 0
Releases(v0.0.1)
Owner
ASAPP Research
AI for Enterprise
ASAPP Research
Spert NLP Relation Extraction API deployed with torchserve for inference

URLMask Python program for Linux users to change a URL to ANY domain. A program than can take any url and mask it to any domain name you like. E.g. ne

Zichu Chen 1 Nov 24, 2021
Sorce code and datasets for "K-BERT: Enabling Language Representation with Knowledge Graph",

K-BERT Sorce code and datasets for "K-BERT: Enabling Language Representation with Knowledge Graph", which is implemented based on the UER framework. R

Weijie Liu 834 Jan 09, 2023
Dope Wars game engine on StarkNet L2 roll-up

RYO Dope Wars game engine on StarkNet L2 roll-up. What TI-83 drug wars built as smart contract system. Background mechanism design notion here. Initia

104 Dec 04, 2022
IMS-Toucan is a toolkit to train state-of-the-art Speech Synthesis models

IMS-Toucan is a toolkit to train state-of-the-art Speech Synthesis models. Everything is pure Python and PyTorch based to keep it as simple and beginner-friendly, yet powerful as possible.

Digital Phonetics at the University of Stuttgart 247 Jan 05, 2023
Machine translation models released by the Gourmet project

Gourmet Models Overview The Gourmet project has released several machine translation models to translate low-resource languages. This repository conta

Edinburgh NLP 5 Dec 08, 2021
This is a MD5 password/passphrase brute force tool

CROWES-PASS-CRACK-TOOl This is a MD5 password/passphrase brute force tool How to install: Do 'git clone https://github.com/CROW31/CROWES-PASS-CRACK-TO

9 Mar 02, 2022
Code for EmBERT, a transformer model for embodied, language-guided visual task completion.

Code for EmBERT, a transformer model for embodied, language-guided visual task completion.

41 Jan 03, 2023
Semantic search for quotes.

squote A semantic search engine that takes some input text and returns some (questionably) relevant (questionably) famous quotes. Built with: bert-as-

cjwallace 11 Jun 25, 2022
This is a GUI program that will generate a word search puzzle image

Word Search Puzzle Generator Table of Contents About The Project Built With Getting Started Prerequisites Installation Usage Roadmap Contributing Cont

11 Feb 22, 2022
多语言降噪预训练模型MBart的中文生成任务

mbart-chinese 基于mbart-large-cc25 的中文生成任务 Input source input: text + /s + lang_code target input: lang_code + text + /s Usage token_ids_mapping.jso

11 Sep 19, 2022
ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators

ELECTRA Introduction ELECTRA is a method for self-supervised language representation learning. It can be used to pre-train transformer networks using

Google Research 2.1k Dec 28, 2022
The FinQA dataset from paper: FinQA: A Dataset of Numerical Reasoning over Financial Data

Data and code for EMNLP 2021 paper "FinQA: A Dataset of Numerical Reasoning over Financial Data"

Zhiyu Chen 114 Dec 29, 2022
HuggingSound: A toolkit for speech-related tasks based on HuggingFace's tools

HuggingSound HuggingSound: A toolkit for speech-related tasks based on HuggingFace's tools. I have no intention of building a very complex tool here.

Jonatas Grosman 247 Dec 26, 2022
Easy to use, state-of-the-art Neural Machine Translation for 100+ languages

EasyNMT - Easy to use, state-of-the-art Neural Machine Translation This package provides easy to use, state-of-the-art machine translation for more th

Ubiquitous Knowledge Processing Lab 748 Jan 06, 2023
LSTM based Sentiment Classification using Tensorflow - Amazon Reviews Rating

LSTM based Sentiment Classification using Tensorflow - Amazon Reviews Rating (Dataset) The dataset is from Amazon Review Data (2018)

Immanuvel Prathap S 1 Jan 16, 2022
Pipelines de datos, 2021.

Este repo ilustra un proceso sencillo de automatización de transformación y modelado de datos, a través de un pipeline utilizando Luigi. Stack princip

Rodolfo Ferro 8 May 19, 2022
Source code for CsiNet and CRNet using Fully Connected Layer-Shared feedback architecture.

FCS-applications Source code for CsiNet and CRNet using the Fully Connected Layer-Shared feedback architecture. Introduction This repository contains

Boyuan Zhang 4 Oct 07, 2022
Words_And_Phrases - Just a repo for useful words and phrases that might come handy in some scenarios. Feel free to add yours

Words_And_Phrases Just a repo for useful words and phrases that might come handy in some scenarios. Feel free to add yours Abbreviations Abbreviation

Subhadeep Mandal 1 Feb 01, 2022
A text augmentation tool for named entity recognition.

neraug This python library helps you with augmenting text data for named entity recognition. Augmentation Example Reference from An Analysis of Simple

Hiroki Nakayama 48 Oct 11, 2022
CoSENT 比Sentence-BERT更有效的句向量方案

CoSENT 比Sentence-BERT更有效的句向量方案

苏剑林(Jianlin Su) 201 Dec 12, 2022