Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition

Related tags

Text Data & NLPsew
Overview

SEW (Squeezed and Efficient Wav2vec)

made-with-python License: MIT

The repo contains the code of the paper "Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition" by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q Weinberger, and Yoav Artzi.

Model Checkpoints

Unsupervisedly Pre-trained on LibriSpeech 960h

Model Pre-training updates Dataset Model
W2V2-tiny 100K Librispeech 960h download
W2V2-small 100K Librispeech 960h download
W2V2-mid 100K Librispeech 960h download
W2V2-base 100K Librispeech 960h download
SEW-tiny 100K Librispeech 960h download
SEW-small 100K Librispeech 960h download
SEW-mid 100K Librispeech 960h download
SEW-D-tiny 100K Librispeech 960h download
SEW-D-small 100K Librispeech 960h download
SEW-D-mid 100K Librispeech 960h download
SEW-D-mid (k127) 100K Librispeech 960h download
SEW-D-base 100K Librispeech 960h download
SEW-D-base+ 100K Librispeech 960h download
SEW-D-mid 400K Librispeech 960h download
SEW-D-mid (k127) 400K Librispeech 960h download
SEW-D-base+ 400K Librispeech 960h download

ASR model fine-tuned on LibriSpeech train-clean 100h

Model Pre-training updates Finetuning split Model
SEW-tiny 100K 100h download
SEW-D-tiny 100K 100h download
SEW-D-mid 400K 100h download
SEW-D-mid (k127) 400K 100h download
SEW-D-base+ 400K 100h download

Usage

Dependencies

The code is tested with fairseq commit 05255f9, deberta commit bf17ca4 and the following packages.

torch==1.8.0
torchaudio==0.8.0
tqdm==4.49.0
Hydra==2.5
hydra-core==1.0.4
fvcore==0.1.5.post20210330
omegaconf==2.0.5
einops==0.3.0
fire==0.2.1

Apex

Please install NVIDIA's apex with

git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" \
  --global-option="--deprecated_fused_adam" --global-option="--xentropy" \
  --global-option="--fast_multihead_attn" ./

wav2letter decoder

Currently, we are decoding with wav2letter v0.2 python binding at commit 96f5f9d Please install the python binding here https://github.com/flashlight/wav2letter/tree/96f5f9d3b41e01af0a031ee0d2604acd9ef3b1b0/bindings/python The newest commit d5a93f0 in v0.2 branch leads to worse WER for wav2vec 2.0 baselines.

Installation

git clone https://github.com/asappresearch/sew.git
cd sew 
pip install -e .

Pre-training

Pre-training SEW models

Run the following command where $model_size can be tiny, small, or mid, and $ngpu is tne number of GPUs you want to use.

bash scripts/pt-sew.sh $model_size $ngpu

Pre-training SEW-D models

bash scripts/pt-sew-d.sh $model_size $ngpu

where $model_size can be tiny, small, mid, mid-k127, base, or base+.

Fine-tuning

Run the following script to fine-tune a model with the hyperparameters from wav2vec 2.0.

bash scripts/ft-model.sh $pre_trained_model $split $ngpu

where $pre_trained_model can be either a W2V2, SEW, or a SEW-D model checkpoint and $split can be 10m, 1h, 10h, or 100h.

Here we also provide a set of hyperparameters which sets all dropouts the same as the pre-training stage, and we found it to be more stable.

bash scripts/ft-model-stable.sh $pre_trained_model $split $ngpu

If you see out of GPU memory error, please scale down the dataset.max_tokens and scale up the optimization.update_freq in scripts/ft-model.sh. For example modifying these lines

  dataset.max_tokens=3200000 \
  optimization.update_freq="[$((8 / $ngpu))]" \

to

  dataset.max_tokens=1600000 \
  optimization.update_freq="[$((16 / $ngpu))]" \

which reduces the batch size and increases the gradient accumulation steps in order to use less GPU memory.

Evaluation

  1. Please run this script to prepare the official LibriSpeech 4-gram language model.
bash scripts/prepare_librispeech_lm.sh $kenlm_build_bin

where $kenlm_build_bin is the folder that contains the KenLM build_binary executable file (e.g. /home/user/kenlm/build/bin).

  1. Then run this script to evaluate a pre-trained ASR model
python tools/eval_w2v.py tunelm --subsets '["dev-clean", "dev-other", "test-clean", "test-other"]' --model $asr_checkpoint
You might also like...
Neural building blocks for speaker diarization: speech activity detection, speaker change detection, overlapped speech detection, speaker embedding
Neural building blocks for speaker diarization: speech activity detection, speaker change detection, overlapped speech detection, speaker embedding

⚠️ Checkout develop branch to see what is coming in pyannote.audio 2.0: a much smaller and cleaner codebase Python-first API (the good old pyannote-au

PyTorch implementation of Microsoft's text-to-speech system FastSpeech 2: Fast and High-Quality End-to-End Text to Speech.
PyTorch implementation of Microsoft's text-to-speech system FastSpeech 2: Fast and High-Quality End-to-End Text to Speech.

An implementation of Microsoft's "FastSpeech 2: Fast and High-Quality End-to-End Text to Speech"

Simple Speech to Text, Text to Speech

Simple Speech to Text, Text to Speech 1. Download Repository Opsi 1 Download repository ini, extract di lokasi yang diinginkan Opsi 2 Jika sudah famil

Code for ACL 2022 main conference paper "STEMM: Self-learning with Speech-text Manifold Mixup for Speech Translation".

STEMM: Self-learning with Speech-Text Manifold Mixup for Speech Translation This is a PyTorch implementation for the ACL 2022 main conference paper ST

Unsupervised intent recognition

INTENT author: steeve LAQUITAINE description: deployment pattern: currently batch only Setup & run git clone https://github.com/slq0/intent.git bash

Implementaion of our ACL 2022 paper Bridging the Data Gap between Training and Inference for Unsupervised Neural Machine Translation

Bridging the Data Gap between Training and Inference for Unsupervised Neural Machine Translation This is the implementaion of our paper: Bridging the

PhoNLP: A BERT-based multi-task learning toolkit for part-of-speech tagging, named entity recognition and dependency parsing
PhoNLP: A BERT-based multi-task learning toolkit for part-of-speech tagging, named entity recognition and dependency parsing

PhoNLP is a multi-task learning model for joint part-of-speech (POS) tagging, named entity recognition (NER) and dependency parsing. Experiments on Vietnamese benchmark datasets show that PhoNLP produces state-of-the-art results, outperforming a single-task learning approach that fine-tunes the pre-trained Vietnamese language model PhoBERT for each task independently.

Bidirectional LSTM-CRF and ELMo for Named-Entity Recognition, Part-of-Speech Tagging and so on.
Bidirectional LSTM-CRF and ELMo for Named-Entity Recognition, Part-of-Speech Tagging and so on.

anaGo anaGo is a Python library for sequence labeling(NER, PoS Tagging,...), implemented in Keras. anaGo can solve sequence labeling tasks such as nam

Bidirectional LSTM-CRF and ELMo for Named-Entity Recognition, Part-of-Speech Tagging and so on.
Bidirectional LSTM-CRF and ELMo for Named-Entity Recognition, Part-of-Speech Tagging and so on.

anaGo anaGo is a Python library for sequence labeling(NER, PoS Tagging,...), implemented in Keras. anaGo can solve sequence labeling tasks such as nam

Comments
  • 8000 sample rate audio

    8000 sample rate audio

    Hello there,

    I'm trying to train on 8000 Hz sample rate audio dataset. Is it enough to simply add task.sample_rate=8000 to the fairseq command or there are additional config changes that I should make?

    I would much appreciate any advice

    Thank you

    opened by Mega4alik 0
  • How to train using not English Languages

    How to train using not English Languages

    Hi! Thank you for the awesome model!

    We are very interested in your project and we try to use the sew for Japanese Language. When we train the model, should we use these scripts? Thanks! https://github.com/asappresearch/sew/tree/master/scripts

    opened by jigenji 1
  • :bug: Fix padding mask calculation

    :bug: Fix padding mask calculation

    This PR updates the padding mask calculation to be the same as the one in the reference Wav2Vec2 implementation (same commit as listed in SEW's README): https://github.com/pytorch/fairseq/blob/05255f96410e5b1eaf3bf59b767d5b4b7e2c3a35/fairseq/models/wav2vec/wav2vec2.py#L477

    For more details on how and why it was fixed in fairseq, check out this PR by @patrickvonplaten https://github.com/pytorch/fairseq/pull/3228

    opened by anton-l 0
Releases(v0.0.1)
Owner
ASAPP Research
AI for Enterprise
ASAPP Research
Unofficial Python library for using the Polish Wordnet (plWordNet / Słowosieć)

Polish Wordnet Python library Simple, easy-to-use and reasonably fast library for using the Słowosieć (also known as PlWordNet) - a lexico-semantic da

Max Adamski 12 Dec 23, 2022
Subtitle Workshop (subshop): tools to download and synchronize subtitles

SUBSHOP Tools to download, remove ads, and synchronize subtitles. SUBSHOP Purpose Limitations Required Web Credentials Installation, Configuration, an

Joe D 4 Feb 13, 2022
Th2En & Th2Zh: The large-scale datasets for Thai text cross-lingual summarization

Th2En & Th2Zh: The large-scale datasets for Thai text cross-lingual summarization 📥 Download Datasets 📥 Download Trained Models INTRODUCTION TH2ZH (

Nakhun Chumpolsathien 5 Jan 03, 2022
Product-Review-Summarizer - Created a product review summarizer which clustered thousands of product reviews and summarized them into a maximum of 500 characters, saving precious time of customers and helping them make a wise buying decision.

Product-Review-Summarizer - Created a product review summarizer which clustered thousands of product reviews and summarized them into a maximum of 500 characters, saving precious time of customers an

Parv Bhatt 1 Jan 01, 2022
Graph Coloring - Weighted Vertex Coloring Problem

Graph Coloring - Weighted Vertex Coloring Problem This project proposes several local searches and an MCTS algorithm for the weighted vertex coloring

Cyril 1 Jul 08, 2022
Pre-training with Extracted Gap-sentences for Abstractive SUmmarization Sequence-to-sequence models

PEGASUS library Pre-training with Extracted Gap-sentences for Abstractive SUmmarization Sequence-to-sequence models, or PEGASUS, uses self-supervised

Google Research 1.4k Dec 22, 2022
🚀Clone a voice in 5 seconds to generate arbitrary speech in real-time

English | 中文 Features 🌍 Chinese supported mandarin and tested with multiple datasets: aidatatang_200zh, magicdata, aishell3, data_aishell, and etc. ?

Vega 25.6k Dec 31, 2022
Programme de chiffrement et de déchiffrement inverse d'un message en python3.

Chiffrement Inverse En Python3 Programme de chiffrement et de déchiffrement inverse d'un message en python3. Explication du chiffrement inverse avec c

Malik Makkes 2 Mar 26, 2022
Baseline code for Korean open domain question answering(ODQA)

Open-Domain Question Answering(ODQA)는 다양한 주제에 대한 문서 집합으로부터 자연어 질의에 대한 답변을 찾아오는 task입니다. 이때 사용자 질의에 답변하기 위해 주어지는 지문이 따로 존재하지 않습니다. 따라서 사전에 구축되어있는 Knowl

VUMBLEB 69 Nov 04, 2022
Data preprocessing rosetta parser for python

datapreprocessing_rosetta_parser I've never done any NLP or text data processing before, so I wanted to use this hackathon as a learning opportunity,

ASReview hackathon for Follow the Money 2 Nov 28, 2021
IMDB film review sentiment classification based on BERT's supervised learning model.

IMDB film review sentiment classification based on BERT's supervised learning model. On the other hand, the model can be extended to other natural language multi-classification tasks.

Paris 1 Apr 17, 2022
HF's ML for Audio study group

Hugging Face Machine Learning for Audio Study Group Welcome to the ML for Audio Study Group. Through a series of presentations, paper reading and disc

Vaibhav Srivastav 110 Jan 01, 2023
Toy example of an applied ML pipeline for me to experiment with MLOps tools.

Toy Machine Learning Pipeline Table of Contents About Getting Started ML task description and evaluation procedure Dataset description Repository stru

Shreya Shankar 190 Dec 21, 2022
Various capabilities for static malware analysis.

Malchive The malchive serves as a compendium for a variety of capabilities mainly pertaining to malware analysis, such as scripts supporting day to da

MITRE Cybersecurity 64 Nov 22, 2022
💬 Open source machine learning framework to automate text- and voice-based conversations: NLU, dialogue management, connect to Slack, Facebook, and more - Create chatbots and voice assistants

Rasa Open Source Rasa is an open source machine learning framework to automate text-and voice-based conversations. With Rasa, you can build contextual

Rasa 15.3k Dec 30, 2022
HAN2HAN : Hangul Font Generation

HAN2HAN : Hangul Font Generation

Changwoo Lee 36 Dec 28, 2022
Google and Stanford University released a new pre-trained model called ELECTRA

Google and Stanford University released a new pre-trained model called ELECTRA, which has a much compact model size and relatively competitive performance compared to BERT and its variants. For furth

Yiming Cui 1.2k Dec 30, 2022
Autoregressive Entity Retrieval

The GENRE (Generative ENtity REtrieval) system as presented in Autoregressive Entity Retrieval implemented in pytorch. @inproceedings{decao2020autoreg

Meta Research 611 Dec 16, 2022
A multi-voice TTS system trained with an emphasis on quality

TorToiSe Tortoise is a text-to-speech program built with the following priorities: Strong multi-voice capabilities. Highly realistic prosody and inton

James Betker 2.1k Jan 01, 2023
Shared, streaming Python dict

UltraDict Sychronized, streaming Python dictionary that uses shared memory as a backend Warning: This is an early hack. There are only few unit tests

Ronny Rentner 192 Dec 23, 2022