Neural building blocks for speaker diarization: speech activity detection, speaker change detection, overlapped speech detection, speaker embedding

Overview

⚠️ Checkout develop branch to see what is coming in pyannote.audio 2.0:

Neural speaker diarization with pyannote-audio

pyannote.audio is an open-source toolkit written in Python for speaker diarization. Based on PyTorch machine learning framework, it provides a set of trainable end-to-end neural building blocks that can be combined and jointly optimized to build speaker diarization pipelines:

pyannote.audio also comes with pretrained models covering a wide range of domains for voice activity detection, speaker change detection, overlapped speech detection, and speaker embedding:

segmentation

Open In Colab

Installation

pyannote.audio only supports Python 3.7 (or later) on Linux and macOS. It might work on Windows but there is no garantee that it does, nor any plan to add official support for Windows.

The instructions below assume that pytorch has been installed using the instructions from https://pytorch.org.

$ pip install pyannote.audio==1.1.1

Documentation and tutorials

Until a proper documentation is released, note that part of the API is described in this tutorial.

Citation

If you use pyannote.audio please use the following citation

@inproceedings{Bredin2020,
  Title = {{pyannote.audio: neural building blocks for speaker diarization}},
  Author = {{Bredin}, Herv{\'e} and {Yin}, Ruiqing and {Coria}, Juan Manuel and {Gelly}, Gregory and {Korshunov}, Pavel and {Lavechin}, Marvin and {Fustes}, Diego and {Titeux}, Hadrien and {Bouaziz}, Wassim and {Gill}, Marie-Philippe},
  Booktitle = {ICASSP 2020, IEEE International Conference on Acoustics, Speech, and Signal Processing},
  Address = {Barcelona, Spain},
  Month = {May},
  Year = {2020},
}
Comments
  • [WIP] Multilabel Detection

    [WIP] Multilabel Detection

    This is a new PR for the VTC feature, this time based on a cleaner implem. I'm making a new PR as to keep the former branch "clean" (and prevent any mishaps).

    What is done:

    • renaming the SpeakerTracking task into a MultilabelDetection task
    • added MultilabelPipeline
    • update MultilabelFscore.report()
    • tested the new preprocessor

    What's to be done:

    • [ ] re-test the new implem on our clinical data (as well as the child data from @MarvinLvn )
    • [ ] maybe a couple of unit tests (especially for the preprocessor)
    • [ ] maybe make the aggregated "multilabel" fscore duration-based instead of file-based
    opened by hadware 29
  • Trying the diarization pipeline on random .wav files

    Trying the diarization pipeline on random .wav files

    Hey, as suggested by the detailed tutorials, i went through them and trained all the models required for the pipeline. The pipeline is working on the AMI dataset but when i try to reproduce the results on other .wav files sampled at 16k, mono, and 256bps, it is not able to diarize the audio. Here is the breif of what i actually did.

    1. Took a random meeting audio file, sampled at 16k , mono and 256bps
    2. renamed it to ES2003a and replaced it with actual ES2003a ( thought it as a turnaround of creating another database )
    3. ran all the pipelines ( sad,scd, emb, diarization )

    Output :

    1. Speaker activity detection works perfectly and is able to classify regions of speech.
    2. Speaker diarization does't works, everything is classified as 0

    can you please tell if its because of replacing the actual file that the pipeline is giving wrong outputs for the diarization, and whats a better way to test the pipeline on random audios.

    opened by saisumit 26
  • build error

    build error

    Hi, when I run pip install "pyannote.audio==0.3", I got the following error msg:

    In file included from _pysndfile.cpp:471:0: pysndfile.hh:55:21: fatal error: sndfile.h: No such file or directory #include <sndfile.h> ^ compilation terminated. error: command 'gcc' failed with exit status 1


    Failed building wheel for pysndfile Running setup.py clean for pysndfile Failed to build pysndfile

    cannot_reproduce 
    opened by ChristopherLu 24
  • Add support for file handle to pyannote.audio.core.io.Audio

    Add support for file handle to pyannote.audio.core.io.Audio

    This is not currently supported:

    from pyannote.audio.core.io import Audio
    from pyannote.core import Segment
    audio = Audio()
    with open('file.wav', 'rb') as f:
        waveform, sample_rate = audio(f)
    with open('file.wav', 'rb') as f:
        waveform, sample_rate = audio.crop(f, Segment(10, 20))
    

    One has to do this instead:

    from pyannote.audio.core.io import Audio
    from pyannote.core import Segment
    audio = Audio()
    waveform, sample_rate = audio('file.wav')
    waveform, sample_rate = audio.crop('file.wav', Segment(10, 20))
    

    This is a limitation that might be problematic (e.g. with streamlit.file_uploader that returns a file handle)

    v2 
    opened by hbredin 20
  • ValueError: inconsistent

    ValueError: inconsistent "classes" (is ['non_change', 'change'], should be: ['non_speech', 'speech'])

    Describe the bug I'm trying to go through the diarization pipeline tutorial on my own data.

    I am trying to run "apply" on my own data and model for speaker change detection. I get an error that looks like it's trying to apply speech activity detection

    ValueError: inconsistent "classes" (is ['non_change', 'change'], should be: ['non_speech', 'speech'])

    To Reproduce Steps to reproduce the behavior:

    $ export EXP_DIR=tutorials/pipelines/speaker_diarization 
    $ pyannote-audio scd  apply --step=0.1 --pretrained="<path to>/tutorials/models/speaker_change_detection/train/myData.SpeakerDiarization.general.train/validate_segmentation_fscore/myData.SpeakerDiarization.general.train" --subset=train ${EXP_DIR} myData.SpeakerDiarization.general
    
    

    pyannote environment

    $ pip freeze | grep pyannote
    pyannote.core==4.1
    pyannote.database==4.0.1
    pyannote.metrics==3.0.1
    pyannote.pipeline==1.5.2
    

    Additional context I only prepared a development set called "train" right now - so I'm running on that. I successfully ran the SAD apply step before moving to SCD.

    wontfix 
    opened by danFromTelAviv 20
  • An error was encountered while loading

    An error was encountered while loading "pyannote/speaker-diarization"

    Hello,when i run the code :

    from pyannote.audio import Pipeline
    pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization",
                                        use_auth_token="my_token")
    

    I get an error :

    Traceback (most recent call last):
      File "/home/dg/anaconda3/envs/pyannote/lib/python3.8/site-packages/huggingface_hub/utils/_errors.py", line 213, in hf_raise_for_status
        response.raise_for_status()
      File "/home/dg/anaconda3/envs/pyannote/lib/python3.8/site-packages/requests/models.py", line 1021, in raise_for_status
        raise HTTPError(http_error_msg, response=self)
    requests.exceptions.HTTPError: 403 Client Error: Forbidden for url: https://huggingface.co/pyannote/segmentation/resolve/2022.07/pytorch_model.bin
    

    whether I use the read token role or the write token role. Anyone else know how to fix it? Thx.

    opened by Zpadger 18
  • [WIP] Feat/vtc

    [WIP] Feat/vtc

    This is a working PR on the future VTC implementation inspired from @MarvinLvn 's work, and to be merged into the next release of pyannote-audio.

    Note: nothing has been done yet, this is just to get things started.

    wontfix 
    opened by hadware 17
  • Trying to finetune model for new speaker

    Trying to finetune model for new speaker

    I am trying to finetune models to support one more speaker, but it looks I am doing something wrong.

    I want to use "dia_hard" pipeline, so I need to finetune models: {sad_dihard, scd_dihard, emb_voxceleb}.

    For my speaker I have one WAV file with duration more then 1 hour.

    So, I created database.yml file:

    Databases:
       IK: /content/fine/kirilov/{uri}.wav
    
    Protocols:
        IK:
           SpeakerDiarization:
              kirilov:
                train:
                   uri: train.lst
                   annotation: train.rttm
                   annotated: train.uem
    

    and put additional files near database.yml:

    kirilov
    ├── database.yml
    ├── kirilov.wav
    ├── train.lst
    ├── train.rttm
    └── train.uem
    

    train.lst: kirilov

    train.rttm: SPEAKER kirilov 1 0.0 3600.0 <NA> <NA> Kirilov <NA> <NA>

    train.uem: kirilov NA 0.0 3600.0

    I assume it will say trainer to use kirilov.wav file and take 3600 seconds of audio from it to use for training.

    Now I finetune the models, current folder is /content/fine/kirilov, so database.yml is taken from the current directory:

    !pyannote-audio sad train --pretrained=sad_dihard --subset=train --to=1 --parallel=4 "/content/fine/sad" IK.SpeakerDiarization.kirilov
    !pyannote-audio scd train --pretrained=scd_dihard --subset=train --to=1 --parallel=4 "/content/fine/scd" IK.SpeakerDiarization.kirilov
    !pyannote-audio emb train --pretrained=emb_voxceleb --subset=train --to=1 --parallel=4 "/content/fine/emb" IK.SpeakerDiarization.kirilov
    

    Output looks like:

    Using cache found in /root/.cache/torch/hub/pyannote_pyannote-audio_develop
    Loading labels: 0file [00:00, ?file/s]/usr/local/lib/python3.6/dist-packages/pyannote/database/protocol/protocol.py:128: UserWarning:
    
    Existing key "annotation" may have been modified.
    
    Loading labels: 1file [00:00, 20.49file/s]
    /usr/local/lib/python3.6/dist-packages/pyannote/audio/train/trainer.py:128: UserWarning:
    
    Did not load optimizer state (most likely because current training session uses a different loss than the one used for pre-training).
    
    2020-06-19 15:35:26.763592: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.1
    Training:   0%|                                        | 0/1 [00:00<?, ?epoch/s]
    Epoch pyannote/pyannote-database#1:   0%|                                       | 0/29 [00:00<?, ?batch/s]
    Epoch pyannote/pyannote-database#1:   0%|                           | 0/29 [00:00<?, ?batch/s, loss=0.676]
    Epoch pyannote/pyannote-database#1:   3%|▋                  | 1/29 [00:00<00:26,  1.04batch/s, loss=0.676]
    

    Etc.

    And try to run pipeline with new .pt's:

    import os
    import torch
    from pyannote.audio.pipeline import SpeakerDiarization
    pipeline = SpeakerDiarization(embedding = "/content/fine/emb/train/IK.SpeakerDiarization.kirilov.train/weights/0001.pt", 
                                  sad_scores = "/content/fine/sad/train/IK.SpeakerDiarization.kirilov.train/weights/0001.pt",
                                  scd_scores = "/content/fine/scd/train/IK.SpeakerDiarization.kirilov.train/weights/0001.pt",
                                  method= "affinity_propagation")
    
    #params from dia_dihard\train\X.SpeakerDiarization.DIHARD_Official.development\params.yml
    pipeline.load_params("/content/drive/My Drive/pyannote/params.yml")
    FILE = {'audio': "/content/groundtruth/new.wav"}
    diarization = pipeline(FILE)
    diarization
    

    The result is that for my new.wav the whole audio is recognized as speaker talking without pauses. So I assume that the models were broken. And it does not matter if I train for 1 epoch or for 100.

    In case I use:

    1. 0000.pt - I assume these are the original models
    pipeline = SpeakerDiarization(embedding = "/content/fine/emb/train/IK.SpeakerDiarization.kirilov.train/weights/0000.pt", 
                                  sad_scores = "/content/fine/sad/train/IK.SpeakerDiarization.kirilov.train/weights/0000.pt",
                                  scd_scores = "/content/fine/scd/train/IK.SpeakerDiarization.kirilov.train/weights/0000.pt",
                                  method= "affinity_propagation")
    

    or

    1. weights from original models
    pipeline = SpeakerDiarization(embedding = "/content/drive/My Drive/pyannote/emb_voxceleb/train/X.SpeakerDiarization.VoxCeleb.train/weights/0326.pt", 
                                 sad_scores = "/content/drive/My Drive/pyannote/sad_dihard/sad_dihard/train/X.SpeakerDiarization.DIHARD_Official.train/weights/0231.pt",
                                 scd_scores = "/content/drive/My Drive/pyannote/scd_dihard/train/X.SpeakerDiarization.DIHARD_Official.train/weights/0421.pt",
                                 method= "affinity_propagation")
    

    everything is ok and the result is similar to

    pipeline = torch.hub.load('pyannote/pyannote-audio', 'dia_dihard')
    FILE = {'audio': "/content/groundtruth/new.wav"}
    diarization = pipeline(FILE)
    diarization
    

    Could you please advise what could be wrong with my training\finetuning process?

    opened by marlon-br 17
  • `b c t` vs. `b t c`?

    `b c t` vs. `b t c`?

    Issue by hbredin Friday Oct 30, 2020 at 16:46 GMT Originally opened as https://github.com/hbredin/pyannote-audio-v2/issues/54


    Which convention should we use?

    v2 
    opened by mogwai 16
  • Segmentation Fault when conducting change detection tutorial

    Segmentation Fault when conducting change detection tutorial

    Hi,

    Everything seems ok for the feature extraction tutorial. But when I train the model following exactly what the tutorial asks me to do for change detection, I got segmentation fault. What might be probably the reason. Thank you for your help.

    opened by Charliechen1 16
  • Cannot find my Pretrained model

    Cannot find my Pretrained model

    I successfully trained an sad model. I want to create sad scores as part of the speaker diarization pipeline. I thought I am passing the weights correctly to the pyannote-audio script but the model is never found and the script aborts. Here is the output of my bash script with tracing on.

    This is the error message I get.

    RuntimeError: Cannot find callable /misc/vlgscratch4/PichenyGroup/picheny/headcam/headcam-code-try2/models/speech_activity_detection/train/AMI.SpeakerDiarization.MixHeadset.train/weights/0101.pt in hubconf

    For readability, I have boldfaced the commands in the script.

    ++ export EXP_DIR=models/speaker_diarization ++ EXP_DIR=models/speaker_diarization ++ cd /misc/vlgscratch4/PichenyGroup/picheny/headcam/headcam-code-try2 ++ export PYANNOTE_DATABASE_CONFIG=/misc/vlgscratch4/PichenyGroup/picheny/headcam/headcam-code-try2/database.yml ++ PYANNOTE_DATABASE_CONFIG=/misc/vlgscratch4/PichenyGroup/picheny/headcam/headcam-code-try2/database.yml ++ sad_model=/misc/vlgscratch4/PichenyGroup/picheny/headcam/headcam-code-try2/models/speech_activity_detection/train/AMI.SpeakerDiarization.MixHeadset.train/weights/0101.pt ++ ls /misc/vlgscratch4/PichenyGroup/picheny/headcam/headcam-code-try2/models/speech_activity_detection/train/AMI.SpeakerDiarization.MixHeadset.train/weights/0101.pt /misc/vlgscratch4/PichenyGroup/picheny/headcam/headcam-code-try2/models/speech_activity_detection/train/AMI.SpeakerDiarization.MixHeadset.train/weights/0101.pt ++ pyannote-audio sad apply --step=0.1 --pretrained=/misc/vlgscratch4/PichenyGroup/picheny/headcam/headcam-code-try2/models/speech_activity_detection/train/AMI.SpeakerDiarization.MixHeadset.train/weights/0101.pt --subset=dev models/speaker_diarization AMI.SpeakerDiarization.MixHeadset Using cache found in /home/map22/.cache/torch/hub/pyannote_pyannote-audio_develop Traceback (most recent call last): File "/misc/vlgscratch4/PichenyGroup/picheny/anaconda3/envs/pyannote-feb32020/bin/pyannote-audio", line 8, in sys.exit(main()) File "/misc/vlgscratch4/PichenyGroup/picheny/anaconda3/envs/pyannote-feb32020/lib/python3.7/site-packages/pyannote/audio/applications/pyannote_audio.py", line 406, in main apply_pretrained(validate_dir, protocol, **params) File "/misc/vlgscratch4/PichenyGroup/picheny/anaconda3/envs/pyannote-feb32020/lib/python3.7/site-packages/pyannote/audio/applications/base.py", line 514, in apply_pretrained step=step) File "/misc/vlgscratch4/PichenyGroup/picheny/anaconda3/envs/pyannote-feb32020/lib/python3.7/site-packages/torch/hub.py", line 364, in load entry = _load_entry_from_hubconf(hub_module, model) File "/misc/vlgscratch4/PichenyGroup/picheny/anaconda3/envs/pyannote-feb32020/lib/python3.7/site-packages/torch/hub.py", line 237, in _load_entry_from_hubconf raise RuntimeError('Cannot find callable {} in hubconf'.format(model)) RuntimeError: Cannot find callable /misc/vlgscratch4/PichenyGroup/picheny/headcam/headcam-code-try2/models/speech_activity_detection/train/AMI.SpeakerDiarization.MixHeadset.train/weights/0101.pt in hubconf

    opened by picheny-nyu 15
  • TypeError: __init__() missing 1 required positional argument: 'signature' while reproducing change-detection tutorial

    TypeError: __init__() missing 1 required positional argument: 'signature' while reproducing change-detection tutorial

    While following this tutorial https://github.com/pyannote/pyannote-audio/tree/89da05ea9d6de97da9bd21949a26ceb0042ef361/tutorials/change-detection

    and while executing this " pyannote-change-detection train \ ${EXPERIMENT_DIR} \ AMI.SpeakerDiarization.MixHeadset "

    File "/home/jashwanth/miniconda3/envs/py36-pyannote-audio/bin/pyannote-change-detection", line 8, in sys.exit(main()) File "/home/jashwanth/miniconda3/envs/py36-pyannote-audio/lib/python3.6/site-packages/pyannote/audio/applications/change_detection.py", line 380, in main train(protocol, experiment_dir, train_dir, subset=subset) File "/home/jashwanth/miniconda3/envs/py36-pyannote-audio/lib/python3.6/site-packages/pyannote/audio/applications/change_detection.py", line 202, in train generator = ChangeDetectionBatchGenerator(feature_extraction) File "/home/jashwanth/miniconda3/envs/py36-pyannote-audio/lib/python3.6/site-packages/pyannote/audio/generators/change.py", line 93, in init segment_generator) TypeError: init() missing 1 required positional argument: 'signature' please can anyone help me with this!!

    Thank you in advance

    opened by Jashwantherao 0
  • How to select threshold and min_cluster_size values in clustering after I finetuned embedding model ?

    How to select threshold and min_cluster_size values in clustering after I finetuned embedding model ?

    Hi. Thanks for sharing great repository. I have a question. I finetuned embedding model in speaker diarization pipeline. After that, I don't know how to set threshold and min_cluster_size params in config.yaml file. Can you give me some advices ?

    opened by dungnguyen98 0
  • Fixes for PytorchLightning >= 1.8

    Fixes for PytorchLightning >= 1.8

    Adjust to PytorchLightning API changes in version 1.8.0. I did some testing to make sure nothing broke, including model training/finetuning and loading from pretrained/HF-hub; however, my tests likely didn't cover everything.

    opened by entn-at 1
  • Support MLflow along with Tensorboard for logging segmentation task visualizations during validation

    Support MLflow along with Tensorboard for logging segmentation task visualizations during validation

    When using PyTorch-Lightning's MLFlowLogger instead of TensorBoardLogger during training of segmentation models, the current implementation fails because MLflow's experiment tracking client has a different method for logging figures than Tensorboard. Unfortunately, PyTorch-Lightning doesn't abstract away this logger API difference.

    Tested with MLflow and Tensorboard.

    opened by entn-at 1
  • Will it work on real time streaming data ?

    Will it work on real time streaming data ?

    I am currently running it on Apple M2 chip it is taking way much time comparing to Colab. Is there a way that pipeline could be modified to streaming data, and combined with some transcription service ?

    opened by ankurdhuriya 0
Releases(1.1.1)
A notebook that shows how to import the IITB English-Hindi Parallel Corpus from the HuggingFace datasets repository

We provide a notebook that shows how to import the IITB English-Hindi Parallel Corpus from the HuggingFace datasets repository. The notebook also shows how to segment the corpus using BPE tokenizatio

Computation for Indian Language Technology (CFILT) 9 Oct 13, 2022
A simple visual front end to the Maya UE4 RBF plugin delivered with MetaHumans

poseWrangler Overview PoseWrangler is a simple UI to create and edit pose-driven relationships in Maya using the MayaUE4RBF plugin. This plugin is dis

Christopher Evans 105 Dec 18, 2022
Final Project Bootcamp Zero

The Quest (Pygame) Descripción Este es el repositorio de código The-Quest para el proyecto final Bootcamp Zero de KeepCoding. El juego consiste en la

Seven-z01 1 Mar 02, 2022
Code for PED: DETR For (Crowd) Pedestrian Detection

Code for PED: DETR For (Crowd) Pedestrian Detection

36 Sep 13, 2022
Summarization module based on KoBART

KoBART-summarization Install KoBART pip install git+https://github.com/SKT-AI/KoBART#egg=kobart Requirements pytorch==1.7.0 transformers==4.0.0 pytor

seujung hwan, Jung 148 Dec 28, 2022
Generate product descriptions, blogs, ads and more using GPT architecture with a single request to TextCortex API a.k.a Hemingwai

TextCortex - HemingwAI Generate product descriptions, blogs, ads and more using GPT architecture with a single request to TextCortex API a.k.a Hemingw

TextCortex AI 27 Nov 28, 2022
Built for cleaning purposes in military institutions

Ferramenta do AL Construído para fins de limpeza em instituições militares. Instalação Requer python = 3.2 pip install -r requirements.txt Usagem Exe

0 Aug 13, 2022
ADCS - Automatic Defect Classification System (ADCS) for SSMC

Table of Contents Table of Contents ADCS Overview Summary Operator's Guide Demo System Design System Logic Training Mode Production System Flow Folder

Tam Zher Min 2 Jun 24, 2022
Large-scale Self-supervised Pre-training Across Tasks, Languages, and Modalities

Hiring We are hiring at all levels (including FTE researchers and interns)! If you are interested in working with us on NLP and large-scale pre-traine

Microsoft 7.8k Jan 09, 2023
Under the hood working of transformers, fine-tuning GPT-3 models, DeBERTa, vision models, and the start of Metaverse, using a variety of NLP platforms: Hugging Face, OpenAI API, Trax, and AllenNLP

Transformers-for-NLP-2nd-Edition @copyright 2022, Packt Publishing, Denis Rothman Contact me for any question you have on LinkedIn Get the book on Ama

Denis Rothman 150 Dec 23, 2022
🍊 PAUSE (Positive and Annealed Unlabeled Sentence Embedding), accepted by EMNLP'2021 🌴

PAUSE: Positive and Annealed Unlabeled Sentence Embedding Sentence embedding refers to a set of effective and versatile techniques for converting raw

EQT 21 Dec 15, 2022
Search msDS-AllowedToActOnBehalfOfOtherIdentity

前言 现在进行RBCD的攻击手段主要是搜索mS-DS-CreatorSID,如果机器的创建者是我们可控的话,那就可以修改对应机器的msDS-AllowedToActOnBehalfOfOtherIdentity,利用工具SharpAllowedToAct-Modify 那我们索性也试试搜索所有计算机

Jumbo 26 Dec 05, 2022
Word2Wave: a framework for generating short audio samples from a text prompt using WaveGAN and COALA.

Word2Wave is a simple method for text-controlled GAN audio generation. You can either follow the setup instructions below and use the source code and CLI provided in this repo or you can have a play

Ilaria Manco 91 Dec 23, 2022
Implementation of TTS with combination of Tacotron2 and HiFi-GAN

Tacotron2-HiFiGAN-master Implementation of TTS with combination of Tacotron2 and HiFi-GAN for Mandarin TTS. Inference In order to inference, we need t

SunLu Z 7 Nov 11, 2022
This repository serves as a place to document a toy attempt on how to create a generative text model in Catalan, based on GPT-2

GPT-2 Catalan playground and scripts to train a GPT-2 model either from scrath or from another pretrained model.

Laura 1 Jan 28, 2022
Accurately generate all possible forms of an English word e.g "election" --> "elect", "electoral", "electorate" etc.

Accurately generate all possible forms of an English word Word forms can accurately generate all possible forms of an English word. It can conjugate v

Dibya Chakravorty 570 Dec 31, 2022
Production First and Production Ready End-to-End Keyword Spotting Toolkit

Production First and Production Ready End-to-End Keyword Spotting Toolkit

223 Jan 02, 2023
A Persian Image Captioning model based on Vision Encoder Decoder Models of the transformers🤗.

Persian-Image-Captioning We fine-tuning the Vision Encoder Decoder Model for the task of image captioning on the coco-flickr-farsi dataset. The implem

Hamtech-ai 15 Aug 25, 2022
NLP, before and after spaCy

textacy: NLP, before and after spaCy textacy is a Python library for performing a variety of natural language processing (NLP) tasks, built on the hig

Chartbeat Labs Projects 2k Jan 04, 2023
Tokenizer - Module python d'analyse syntaxique et de grammaire, tokenization

Tokenizer Le Tokenizer est un analyseur lexicale, il permet, comme Flex and Yacc par exemple, de tokenizer du code, c'est à dire transformer du code e

Manolo 1 Aug 15, 2022