Rootski - Full codebase for rootski.io (without the data)

Overview

breakdown-svg

πŸ“£ Welcome to the Rootski codebase!

This is the codebase for the application running at rootski.io.

πŸ—’ Note: You can find information and training on the architecture, ticket board, development practices, and how to contribute on our knowledge base.

Rootski is a full-stack application for studying the Russian language by learning roots.

Rootski uses an A.I. algorithm called a "transformer" to break Russian words into roots. Rootski enriches the word breakdowns with data such as definitions, grammar information, related words, and examples and then displays this information to users for them to study.

How is the Rootski project run? (Hint, get involved here πŸ˜ƒ )

Rootski is developed by volunteers!

We use Rootski as a platform to learn and mentor anyone with an interest in frontend/backend development, developing data science models, data engineering, MLOps, DevOps, UX, and running a business. Although the code is open-source, the license for reuse and redistribution is tightly restricted.

The premise for building Rootski "in the open" is this: possibly the best ways to learn to write production-ready, high quality software is to

  1. explore other high-quality software that is already written
  2. develop an application meant to support a large number of users
  3. work with experienced mentors

For better or worse, it's hard to find code for large software systems built to be hosted in the cloud and used by a large number of customers. This is because virtually all apps that fit this description... are proprietary 🀣 . That makes (1) hard.

(2) can be inaccessible due to the amount of time it takes to write well-written software systems without a team (or mentorship). If you're only interested in a sub-part of engineering, or if you are a beginner, it can be infeasible to build an entire production system on your own. Think of this as working on a personal project... with a bunch of other fun people working on it with you.

Contributors

Onboarded and contributed features :D

  • Eric Riddoch - Been working on Rootski for 3 years and counting!
  • Ryan Gardner - Helping with all of the legal/business aspects and dabbling in development

Friends

Completed a lot of the Rootski onboarding and chat with us in our Slack workspace about miscellanious code questions, careers, advice, etc.

  • Isaac Robbins - Learning and building experience in MLOps and DevOps!
  • Colin Varney - Full-stack python guy. Is working his first full-time software job!
  • Fazleem Baig - MLOps guy. Quite experienced with Python and learning about AWS. Working for an AI startup in Canada.
  • Ayse (Aysha) Arslan - Learning about all things MLOps. Working her first MLE/MLOps job!
  • Sebastian Sanchez - Learning about frontend development.
  • Yashwanth (Yash) Kumar - Finishing up the Georgia Tech online masters in CS.






The Technical Stuff

How to deploy an entire Rootski environment from scratch

Going through this, you'll notice that there are several one-time, manual steps. This is common even for teams with a heavily automated infrastructure-as-code workflow, particularly when it comes to the creation of users and storing of credentials.

Once these steps are complete, all subsequent interactions with our Rootski infrastructure can be done using our infrastructure as code and other automation tools.

1. Create an AWS account and user

  1. Create an IAM user with programmatic access
  2. Install the AWS CLI
  3. Run aws configure --profile rootski and copy the credentials from step (1). Set the region to us-west-2.

πŸ—’ Note: this IAM user will need sufficient permissions to create and access the infrastructure that will be discussed below. This includes creating several types of infrastructure using CloudFormation.

2. Create an SSH key pair

  1. In the AWS console, go to EC2 and create an SSH key pair named rootski.
  2. Download the key pair.
  3. Save the key pair somewhere you won't forget. If the pair isn't already named, I like to rename them and store them at ~/.ssh/rootski/rootski.id_rsa (private key) and ~/.ssh/rootski/rootski.id_rsa.pub (public key).
  4. Create a new GitHub account for a "Machine User". Copy/paste the contents of rootski.id_rsa.pub into any boxes you have to to make this work :D this "machine user" is now authorized to clone the rootski repository!

3. Create several parameters in AWS SSM Parameter Store

Parameter Description
/rootski/ssh/private_key The contents of the private key needed to clone the rootski repository.
/rootski/prod/database_config A stringified JSON object with database connection information (see below)
{
    "postgres_user": "rootski-db-user",
    "postgres_password": "rootski-db-pass",
    "postgres_host": "database.rootski.io",
    "postgres_port": "5432",
    "postgres_db": "rootski-db-database-name"
}

4. Purchase a domain name that happens to be rootski.io

You know, the domain name rootski.io is hard coded in a few places throughout the Rootski infrastructure. It felt wasteful to parameterize this everywhere since... it's unlikely that we will ever change our domain name.

If we ever have a need for this, we can revisit it :D

5. Create an ACM TLS certificate verified with the DNS challenge for *.rootski.io

You'll need to do this in the AWS console. This certificate will allow us to access rootski.io and all of its subdomains over HTTPS. You'll need the ARN of this certificate for a later step.

4. Create the rootski infrastructure

Before running these commands, copy/paste the ARN of the *.rootski.io ACM certificate into the appropriate place in infrastructure/iac/cloudformation/front-end/static-website.yml.

# create the S3 bucket and Route53 hosted zone for hosting the React application as a static site
...

# create the AWS Cognito user pool
...

# create the AWS Lightsail instance with the backend database (simultaneously deploys the database)
...

# deploy the API Gateway and Lambda function
...

5. Deploy the frontend site

make deploy-frontend

DONE!

Owner
Eric
In modern Applied Mathematics, we specialize in algorithms. I'm a data scientist with a strong background in algorithm design and software development.
Eric
A BERT-based reverse dictionary of Korean proverbs

Wisdomify A BERT-based reverse-dictionary of Korean proverbs. κΉ€μœ λΉˆ : λͺ¨λΈλ§ / 데이터 μˆ˜μ§‘ / ν”„λ‘œμ νŠΈ 섀계 / back-end κΉ€μ’…μœ€ : 데이터 μˆ˜μ§‘ / ν”„λ‘œμ νŠΈ 섀계 / front-end / back-end μž„μš©

67 Dec 20, 2021
This is a project of data parallel that running on NLP tasks.

This is a project of data parallel that running on NLP tasks.

2 Dec 11, 2021
The code for two papers: Feedback Transformer and Expire-Span.

transformer-sequential This repo contains the code for two papers: Feedback Transformer Expire-Span The training code is structured for long sequentia

Meta Research 115 Jan 18, 2022
Include MelGAN, HifiGAN and Multiband-HifiGAN, maybe NHV in the future.

Fast (GAN Based Neural) Vocoder Chinese README Todo Submit demo Support NHV Discription Include MelGAN, HifiGAN and Multiband-HifiGAN, maybe include N

Zhengxi Liu (εˆ˜ζ­£ζ›¦) 100 Jan 18, 2022
Data and evaluation code for the paper WikiNEuRal: Combined Neural and Knowledge-based Silver Data Creation for Multilingual NER (EMNLP 2021).

Data and evaluation code for the paper WikiNEuRal: Combined Neural and Knowledge-based Silver Data Creation for Multilingual NER. @inproceedings{tedes

Babelscape 12 Jan 17, 2022
Intent parsing and slot filling in PyTorch with seq2seq + attention

PyTorch Seq2Seq Intent Parsing Reframing intent parsing as a human - machine translation task. Work in progress successor to torch-seq2seq-intent-pars

Sean Robertson 160 Oct 14, 2021
DAGAN - Dual Attention GANs for Semantic Image Synthesis

Contents Semantic Image Synthesis with DAGAN Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Evalu

Hao Tang 98 Jan 05, 2022
Need: Image Search With Python

Need: Image Search The problem is that a user needs to search for a specific ima

Surya Komandooru 1 Dec 29, 2021
Python-zhuyin - An open source Python library that provides a unified interface for converting between Chinese pinyin and Zhuyin (bopomofo)

Python-zhuyin - An open source Python library that provides a unified interface for converting between Chinese pinyin and Zhuyin (bopomofo)

2 Jan 12, 2022
Yomichad - a Japanese pop-up dictionary that can display readings and English definitions of Japanese words

Yomichad is a Japanese pop-up dictionary that can display readings and English definitions of Japanese words, kanji, and optionally named entities. It is similar to yomichan, 10ten, and rikaikun in s

Jonas Belouadi 5 Jan 17, 2022
EMNLP 2021 paper "Pre-train or Annotate? Domain Adaptation with a Constrained Budget".

Pre-train or Annotate? Domain Adaptation with a Constrained Budget This repo contains code and data associated with EMNLP 2021 paper "Pre-train or Ann

Fan Bai 8 Dec 16, 2021
List of GSoC organisations with number of times they have been selected.

Welcome to GSoC Organisation Frequency And Details πŸ‘‹ List of GSoC organisations with number of times they have been selected, techonologies, topics,

Shivam Kumar Jha 41 Jan 20, 2022
Composed Image Retrieval using Pretrained LANguage Transformers (CIRPLANT)

CIRPLANT This repository contains the code and pre-trained models for Composed Image Retrieval using Pretrained LANguage Transformers (CIRPLANT) For d

Zheyuan (David) Liu 15 Dec 19, 2021
Semantic search through a vectorized Wikipedia (SentenceBERT) with the Weaviate vector search engine

Semantic search through Wikipedia with the Weaviate vector search engine Weaviate is an open source vector search engine with build-in vectorization a

SeMI Technologies 166 Jan 24, 2022
A Chinese to English Neural Model Translation Project

ZH-EN NMT Chinese to English Neural Machine Translation This project is inspired by Stanford's CS224N NMT Project Dataset used in this project: News C

Zhenbang Feng 19 Jan 17, 2022
The official implementation of "BERT is to NLP what AlexNet is to CV: Can Pre-Trained Language Models Identify Analogies?, ACL 2021 main conference"

BERT is to NLP what AlexNet is to CV This is the official implementation of BERT is to NLP what AlexNet is to CV: Can Pre-Trained Language Models Iden

Asahi Ushio 11 Jan 25, 2022
Code for Emergent Translation in Multi-Agent Communication

Emergent Translation in Multi-Agent Communication PyTorch implementation of the models described in the paper Emergent Translation in Multi-Agent Comm

Facebook Research 76 Jan 17, 2022
Data manipulation and transformation for audio signal processing, powered by PyTorch

torchaudio: an audio library for PyTorch The aim of torchaudio is to apply PyTorch to the audio domain. By supporting PyTorch, torchaudio follows the

1.6k Feb 03, 2022
A music comments dataset, containing 39,051 comments for 27,384 songs.

Music Comments Dataset A music comments dataset, containing 39,051 comments for 27,384 songs. For academic research use only. Introduction This datase

Zhang Yixiao 2 Jan 09, 2022
News-app - A news web app for reading news from different sources and topics using NewsAPI

News-app - This is a news web app for reading news from different sources and topics

1 Jan 30, 2022