Rootski - Full codebase for rootski.io (without the data)

Overview

breakdown-svg

πŸ“£ Welcome to the Rootski codebase!

This is the codebase for the application running at rootski.io.

πŸ—’ Note: You can find information and training on the architecture, ticket board, development practices, and how to contribute on our knowledge base.

Rootski is a full-stack application for studying the Russian language by learning roots.

Rootski uses an A.I. algorithm called a "transformer" to break Russian words into roots. Rootski enriches the word breakdowns with data such as definitions, grammar information, related words, and examples and then displays this information to users for them to study.

How is the Rootski project run? (Hint, get involved here πŸ˜ƒ )

Rootski is developed by volunteers!

We use Rootski as a platform to learn and mentor anyone with an interest in frontend/backend development, developing data science models, data engineering, MLOps, DevOps, UX, and running a business. Although the code is open-source, the license for reuse and redistribution is tightly restricted.

The premise for building Rootski "in the open" is this: possibly the best ways to learn to write production-ready, high quality software is to

  1. explore other high-quality software that is already written
  2. develop an application meant to support a large number of users
  3. work with experienced mentors

For better or worse, it's hard to find code for large software systems built to be hosted in the cloud and used by a large number of customers. This is because virtually all apps that fit this description... are proprietary 🀣 . That makes (1) hard.

(2) can be inaccessible due to the amount of time it takes to write well-written software systems without a team (or mentorship). If you're only interested in a sub-part of engineering, or if you are a beginner, it can be infeasible to build an entire production system on your own. Think of this as working on a personal project... with a bunch of other fun people working on it with you.

Contributors

Onboarded and contributed features :D

  • Eric Riddoch - Been working on Rootski for 3 years and counting!
  • Ryan Gardner - Helping with all of the legal/business aspects and dabbling in development

Friends

Completed a lot of the Rootski onboarding and chat with us in our Slack workspace about miscellanious code questions, careers, advice, etc.

  • Isaac Robbins - Learning and building experience in MLOps and DevOps!
  • Colin Varney - Full-stack python guy. Is working his first full-time software job!
  • Fazleem Baig - MLOps guy. Quite experienced with Python and learning about AWS. Working for an AI startup in Canada.
  • Ayse (Aysha) Arslan - Learning about all things MLOps. Working her first MLE/MLOps job!
  • Sebastian Sanchez - Learning about frontend development.
  • Yashwanth (Yash) Kumar - Finishing up the Georgia Tech online masters in CS.






The Technical Stuff

How to deploy an entire Rootski environment from scratch

Going through this, you'll notice that there are several one-time, manual steps. This is common even for teams with a heavily automated infrastructure-as-code workflow, particularly when it comes to the creation of users and storing of credentials.

Once these steps are complete, all subsequent interactions with our Rootski infrastructure can be done using our infrastructure as code and other automation tools.

1. Create an AWS account and user

  1. Create an IAM user with programmatic access
  2. Install the AWS CLI
  3. Run aws configure --profile rootski and copy the credentials from step (1). Set the region to us-west-2.

πŸ—’ Note: this IAM user will need sufficient permissions to create and access the infrastructure that will be discussed below. This includes creating several types of infrastructure using CloudFormation.

2. Create an SSH key pair

  1. In the AWS console, go to EC2 and create an SSH key pair named rootski.
  2. Download the key pair.
  3. Save the key pair somewhere you won't forget. If the pair isn't already named, I like to rename them and store them at ~/.ssh/rootski/rootski.id_rsa (private key) and ~/.ssh/rootski/rootski.id_rsa.pub (public key).
  4. Create a new GitHub account for a "Machine User". Copy/paste the contents of rootski.id_rsa.pub into any boxes you have to to make this work :D this "machine user" is now authorized to clone the rootski repository!

3. Create several parameters in AWS SSM Parameter Store

Parameter Description
/rootski/ssh/private_key The contents of the private key needed to clone the rootski repository.
/rootski/prod/database_config A stringified JSON object with database connection information (see below)
{
    "postgres_user": "rootski-db-user",
    "postgres_password": "rootski-db-pass",
    "postgres_host": "database.rootski.io",
    "postgres_port": "5432",
    "postgres_db": "rootski-db-database-name"
}

4. Purchase a domain name that happens to be rootski.io

You know, the domain name rootski.io is hard coded in a few places throughout the Rootski infrastructure. It felt wasteful to parameterize this everywhere since... it's unlikely that we will ever change our domain name.

If we ever have a need for this, we can revisit it :D

5. Create an ACM TLS certificate verified with the DNS challenge for *.rootski.io

You'll need to do this in the AWS console. This certificate will allow us to access rootski.io and all of its subdomains over HTTPS. You'll need the ARN of this certificate for a later step.

4. Create the rootski infrastructure

Before running these commands, copy/paste the ARN of the *.rootski.io ACM certificate into the appropriate place in infrastructure/iac/cloudformation/front-end/static-website.yml.

# create the S3 bucket and Route53 hosted zone for hosting the React application as a static site
...

# create the AWS Cognito user pool
...

# create the AWS Lightsail instance with the backend database (simultaneously deploys the database)
...

# deploy the API Gateway and Lambda function
...

5. Deploy the frontend site

make deploy-frontend

DONE!

Owner
Eric
In modern Applied Mathematics, we specialize in algorithms. I'm a data scientist with a strong background in algorithm design and software development.
Eric
KR-FinBert And KR-FinBert-SC

KR-FinBert & KR-FinBert-SC Much progress has been made in the NLP (Natural Language Processing) field, with numerous studies showing that domain adapt

5 Jul 29, 2022
Code for paper Multitask-Finetuning of Zero-shot Vision-Language Models

Code for paper Multitask-Finetuning of Zero-shot Vision-Language Models

Zhenhailong Wang 2 Jul 15, 2022
NLP, Machine learning

Netflix-recommendation-system NLP, Machine learning About Recommendation algorithms are at the core of the Netflix product. It provides their members

Harshith VH 6 Jan 12, 2022
Large-scale Self-supervised Pre-training Across Tasks, Languages, and Modalities

Hiring We are hiring at all levels (including FTE researchers and interns)! If you are interested in working with us on NLP and large-scale pre-traine

Microsoft 7.8k Jan 09, 2023
OceanScript is an Esoteric language used to encode and decode text into a formulation of characters

OceanScript is an Esoteric language used to encode and decode text into a formulation of characters - where the final result looks like waves in the ocean.

πŸ¦† Contextually-keyed word vectors

sense2vec: Contextually-keyed word vectors sense2vec (Trask et. al, 2015) is a nice twist on word2vec that lets you learn more interesting and detaile

Explosion 1.5k Dec 25, 2022
A library for finding knowledge neurons in pretrained transformer models.

knowledge-neurons An open source repository replicating the 2021 paper Knowledge Neurons in Pretrained Transformers by Dai et al., and extending the t

EleutherAI 96 Dec 21, 2022
Indobenchmark are collections of Natural Language Understanding (IndoNLU) and Natural Language Generation (IndoNLG)

Indobenchmark Toolkit Indobenchmark are collections of Natural Language Understanding (IndoNLU) and Natural Language Generation (IndoNLG) resources fo

Samuel Cahyawijaya 11 Aug 26, 2022
SciBERT is a BERT model trained on scientific text.

SciBERT is a BERT model trained on scientific text.

AI2 1.2k Dec 24, 2022
Application for shadowing Chinese.

chinese-shadowing Simple APP for shadowing chinese. With this application, it is very easy to record yourself, play the sound recorded and listen to s

Thomas Hirtz 5 Sep 06, 2022
Unofficial Implementation of Zero-Shot Text-to-Speech for Text-Based Insertion in Audio Narration

Zero-Shot Text-to-Speech for Text-Based Insertion in Audio Narration This repo contains only model Implementation of Zero-Shot Text-to-Speech for Text

Rishikesh (ΰ€‹ΰ€·ΰ€Ώΰ€•ΰ₯‡ΰ€Ά) 33 Sep 22, 2022
MRC approach for Aspect-based Sentiment Analysis (ABSA)

B-MRC MRC approach for Aspect-based Sentiment Analysis (ABSA) Paper: Bidirectional Machine Reading Comprehension for Aspect Sentiment Triplet Extracti

Phuc Phan 1 Apr 05, 2022
Phomber is infomation grathering tool that reverse search phone numbers and get their details, written in python3.

A Infomation Grathering tool that reverse search phone numbers and get their details ! What is phomber? Phomber is one of the best tools available fo

S41R4J 121 Dec 27, 2022
Baseline code for Korean open domain question answering(ODQA)

Open-Domain Question Answering(ODQA)λŠ” λ‹€μ–‘ν•œ μ£Όμ œμ— λŒ€ν•œ λ¬Έμ„œ μ§‘ν•©μœΌλ‘œλΆ€ν„° μžμ—°μ–΄ μ§ˆμ˜μ— λŒ€ν•œ 닡변을 μ°Ύμ•„μ˜€λŠ” taskμž…λ‹ˆλ‹€. μ΄λ•Œ μ‚¬μš©μž μ§ˆμ˜μ— λ‹΅λ³€ν•˜κΈ° μœ„ν•΄ μ£Όμ–΄μ§€λŠ” 지문이 λ”°λ‘œ μ‘΄μž¬ν•˜μ§€ μ•ŠμŠ΅λ‹ˆλ‹€. λ”°λΌμ„œ 사전에 κ΅¬μΆ•λ˜μ–΄μžˆλŠ” Knowl

VUMBLEB 69 Nov 04, 2022
A minimal Conformer ASR implementation adapted from ESPnet.

Conformer ASR A minimal Conformer ASR implementation adapted from ESPnet. Introduction I want to use the pre-trained English ASR model provided by ESP

Niu Zhe 3 Jan 24, 2022
MiCECo - Misskey Custom Emoji Counter

MiCECo Misskey Custom Emoji Counter Introduction This little script counts custo

7 Dec 25, 2022
Paradigm Shift in NLP - "Paradigm Shift in Natural Language Processing".

Paradigm Shift in NLP Welcome to the webpage for "Paradigm Shift in Natural Language Processing". Some resources of the paper are constantly maintaine

Tianxiang Sun 41 Dec 30, 2022
pyupbit 라이브러리λ₯Ό ν™œμš©ν•˜μ—¬ upbitμ—μ„œ λΉ„νŠΈμ½”μΈμ„ μžλ™λ§€λ§€ν•˜λŠ” μ½”λ“œμž…λ‹ˆλ‹€. μ‘°μ½”λ”© 유튜브 μ±„λ„μ—μ„œ μžμ„Έν•œ κ°•μ˜ μ˜μƒμ„ 보싀 수 μžˆμŠ΅λ‹ˆλ‹€.

파이썬 λΉ„νŠΈμ½”μΈ 투자 μžλ™ν™” κ°•μ˜ μ½”λ“œ by 유튜브 μ‘°μ½”λ”© 채널 pyupbit 라이브러리λ₯Ό ν™œμš©ν•˜μ—¬ upbit κ±°λž˜μ†Œμ—μ„œ λΉ„νŠΈμ½”μΈ μžλ™λ§€λ§€λ₯Ό ν•˜λŠ” μ½”λ“œμž…λ‹ˆλ‹€. 파일 ꡬ성 test.py : μž”κ³  쑰회 (1κ°•) backtest.py : λ°±ν…ŒμŠ€νŒ… μ½”λ“œ (2κ°•) bestK.p

μ‘°μ½”λ”© JoCoding 186 Dec 29, 2022
SAVI2I: Continuous and Diverse Image-to-Image Translation via Signed Attribute Vectors

SAVI2I: Continuous and Diverse Image-to-Image Translation via Signed Attribute Vectors [Paper] [Project Website] Pytorch implementation for SAVI2I. We

Qi Mao 44 Dec 30, 2022
nlp-tutorial is a tutorial for who is studying NLP(Natural Language Processing) using Pytorch

nlp-tutorial is a tutorial for who is studying NLP(Natural Language Processing) using Pytorch. Most of the models in NLP were implemented with less than 100 lines of code.(except comments or blank li

Tae-Hwan Jung 11.9k Jan 08, 2023