Rootski - Full codebase for rootski.io (without the data)

Overview

breakdown-svg

📣 Welcome to the Rootski codebase!

This is the codebase for the application running at rootski.io.

🗒 Note: You can find information and training on the architecture, ticket board, development practices, and how to contribute on our knowledge base.

Rootski is a full-stack application for studying the Russian language by learning roots.

Rootski uses an A.I. algorithm called a "transformer" to break Russian words into roots. Rootski enriches the word breakdowns with data such as definitions, grammar information, related words, and examples and then displays this information to users for them to study.

How is the Rootski project run? (Hint, get involved here 😃 )

Rootski is developed by volunteers!

We use Rootski as a platform to learn and mentor anyone with an interest in frontend/backend development, developing data science models, data engineering, MLOps, DevOps, UX, and running a business. Although the code is open-source, the license for reuse and redistribution is tightly restricted.

The premise for building Rootski "in the open" is this: possibly the best ways to learn to write production-ready, high quality software is to

  1. explore other high-quality software that is already written
  2. develop an application meant to support a large number of users
  3. work with experienced mentors

For better or worse, it's hard to find code for large software systems built to be hosted in the cloud and used by a large number of customers. This is because virtually all apps that fit this description... are proprietary 🤣 . That makes (1) hard.

(2) can be inaccessible due to the amount of time it takes to write well-written software systems without a team (or mentorship). If you're only interested in a sub-part of engineering, or if you are a beginner, it can be infeasible to build an entire production system on your own. Think of this as working on a personal project... with a bunch of other fun people working on it with you.

Contributors

Onboarded and contributed features :D

  • Eric Riddoch - Been working on Rootski for 3 years and counting!
  • Ryan Gardner - Helping with all of the legal/business aspects and dabbling in development

Friends

Completed a lot of the Rootski onboarding and chat with us in our Slack workspace about miscellanious code questions, careers, advice, etc.

  • Isaac Robbins - Learning and building experience in MLOps and DevOps!
  • Colin Varney - Full-stack python guy. Is working his first full-time software job!
  • Fazleem Baig - MLOps guy. Quite experienced with Python and learning about AWS. Working for an AI startup in Canada.
  • Ayse (Aysha) Arslan - Learning about all things MLOps. Working her first MLE/MLOps job!
  • Sebastian Sanchez - Learning about frontend development.
  • Yashwanth (Yash) Kumar - Finishing up the Georgia Tech online masters in CS.






The Technical Stuff

How to deploy an entire Rootski environment from scratch

Going through this, you'll notice that there are several one-time, manual steps. This is common even for teams with a heavily automated infrastructure-as-code workflow, particularly when it comes to the creation of users and storing of credentials.

Once these steps are complete, all subsequent interactions with our Rootski infrastructure can be done using our infrastructure as code and other automation tools.

1. Create an AWS account and user

  1. Create an IAM user with programmatic access
  2. Install the AWS CLI
  3. Run aws configure --profile rootski and copy the credentials from step (1). Set the region to us-west-2.

🗒 Note: this IAM user will need sufficient permissions to create and access the infrastructure that will be discussed below. This includes creating several types of infrastructure using CloudFormation.

2. Create an SSH key pair

  1. In the AWS console, go to EC2 and create an SSH key pair named rootski.
  2. Download the key pair.
  3. Save the key pair somewhere you won't forget. If the pair isn't already named, I like to rename them and store them at ~/.ssh/rootski/rootski.id_rsa (private key) and ~/.ssh/rootski/rootski.id_rsa.pub (public key).
  4. Create a new GitHub account for a "Machine User". Copy/paste the contents of rootski.id_rsa.pub into any boxes you have to to make this work :D this "machine user" is now authorized to clone the rootski repository!

3. Create several parameters in AWS SSM Parameter Store

Parameter Description
/rootski/ssh/private_key The contents of the private key needed to clone the rootski repository.
/rootski/prod/database_config A stringified JSON object with database connection information (see below)
{
    "postgres_user": "rootski-db-user",
    "postgres_password": "rootski-db-pass",
    "postgres_host": "database.rootski.io",
    "postgres_port": "5432",
    "postgres_db": "rootski-db-database-name"
}

4. Purchase a domain name that happens to be rootski.io

You know, the domain name rootski.io is hard coded in a few places throughout the Rootski infrastructure. It felt wasteful to parameterize this everywhere since... it's unlikely that we will ever change our domain name.

If we ever have a need for this, we can revisit it :D

5. Create an ACM TLS certificate verified with the DNS challenge for *.rootski.io

You'll need to do this in the AWS console. This certificate will allow us to access rootski.io and all of its subdomains over HTTPS. You'll need the ARN of this certificate for a later step.

4. Create the rootski infrastructure

Before running these commands, copy/paste the ARN of the *.rootski.io ACM certificate into the appropriate place in infrastructure/iac/cloudformation/front-end/static-website.yml.

# create the S3 bucket and Route53 hosted zone for hosting the React application as a static site
...

# create the AWS Cognito user pool
...

# create the AWS Lightsail instance with the backend database (simultaneously deploys the database)
...

# deploy the API Gateway and Lambda function
...

5. Deploy the frontend site

make deploy-frontend

DONE!

Owner
Eric
In modern Applied Mathematics, we specialize in algorithms. I'm a data scientist with a strong background in algorithm design and software development.
Eric
Collection of scripts to pinpoint obfuscated code

Obfuscation Detection (v1.0) Author: Tim Blazytko Automatically detect control-flow flattening and other state machines Description: Scripts and binar

Tim Blazytko 230 Nov 26, 2022
An evaluation toolkit for voice conversion models.

Voice-conversion-evaluation An evaluation toolkit for voice conversion models. Sample test pair Generate the metadata for evaluating models. The direc

30 Aug 29, 2022
Image2pcl - Enter the metaverse with 2D image to 3D projections

Image2PCL Enter the metaverse with 2D image to 3D projections! This is an implem

Benjamin Ho 0 Feb 05, 2022
Snowball compiler and stemming algorithms

Snowball is a small string processing language for creating stemming algorithms for use in Information Retrieval, plus a collection of stemming algori

Snowball Stemming language and algorithms 613 Jan 07, 2023
Amazon Multilingual Counterfactual Dataset (AMCD)

Amazon Multilingual Counterfactual Dataset (AMCD)

35 Sep 20, 2022
Shared, streaming Python dict

UltraDict Sychronized, streaming Python dictionary that uses shared memory as a backend Warning: This is an early hack. There are only few unit tests

Ronny Rentner 192 Dec 23, 2022
Code for our paper "Transfer Learning for Sequence Generation: from Single-source to Multi-source" in ACL 2021.

TRICE: a task-agnostic transferring framework for multi-source sequence generation This is the source code of our work Transfer Learning for Sequence

THUNLP-MT 9 Jun 27, 2022
Few-shot Natural Language Generation for Task-Oriented Dialog

Few-shot Natural Language Generation for Task-Oriented Dialog This repository contains the dataset, source code and trained model for the following pa

172 Dec 13, 2022
Learning to Rewrite for Non-Autoregressive Neural Machine Translation

RewriteNAT This repo provides the code for reproducing our proposed RewriteNAT in EMNLP 2021 paper entitled "Learning to Rewrite for Non-Autoregressiv

Xinwei Geng 20 Dec 25, 2022
ALBERT: A Lite BERT for Self-supervised Learning of Language Representations

ALBERT ***************New March 28, 2020 *************** Add a colab tutorial to run fine-tuning for GLUE datasets. ***************New January 7, 2020

Google Research 3k Dec 26, 2022
text to speech toolkit. 好用的中文语音合成工具箱,包含语音编码器、语音合成器、声码器和可视化模块。

ttskit Text To Speech Toolkit: 语音合成工具箱。 安装 pip install -U ttskit 注意 可能需另外安装的依赖包:torch,版本要求torch=1.6.0,=1.7.1,根据自己的实际环境安装合适cuda或cpu版本的torch。 ttskit的

KDD 483 Jan 04, 2023
The aim of this task is to predict someone's English proficiency based on a text input.

English_proficiency_prediction_NLP The aim of this task is to predict someone's English proficiency based on a text input. Using the The NICT JLE Corp

1 Dec 13, 2021
JaQuAD: Japanese Question Answering Dataset

JaQuAD: Japanese Question Answering Dataset for Machine Reading Comprehension (2022, Skelter Labs)

SkelterLabs 84 Dec 27, 2022
MicBot - MicBot uses Google Translate to speak everyone's chat messages

MicBot MicBot uses Google Translate to speak everyone's chat messages. It can al

2 Mar 09, 2022
Just Another Telegram Ai Chat Bot Written In Python With Pyrogram.

OkaeriChatBot Just another Telegram AI chat bot written in Python using Pyrogram. Requirements Python 3.7 or higher.

Wahyusaputra 2 Dec 23, 2021
A very simple framework for state-of-the-art Natural Language Processing (NLP)

A very simple framework for state-of-the-art NLP. Developed by Humboldt University of Berlin and friends. Flair is: A powerful NLP library. Flair allo

flair 12.3k Jan 02, 2023
gaiic2021-track3-小布助手对话短文本语义匹配复赛rank3、决赛rank4

决赛答辩已经过去一段时间了,我们队伍ac milan最终获得了复赛第3,决赛第4的成绩。在此首先感谢一些队友的carry~ 经过2个多月的比赛,学习收获了很多,也认识了很多大佬,在这里记录一下自己的参赛体验和学习收获。

102 Dec 19, 2022
Neural-Machine-Translation - Implementation of revolutionary machine translation models

Neural Machine Translation Framework: PyTorch Repository contaning my implementa

Utkarsh Jain 1 Feb 17, 2022
A Transformer Implementation that is easy to understand and customizable.

Simple Transformer I've written a series of articles on the transformer architecture and language models on Medium. This repository contains an implem

Naoki Shibuya 4 Jan 20, 2022
Text-to-Speech for Belarusian language

title emoji colorFrom colorTo sdk app_file pinned Belarusian TTS 🐸 green green gradio app.py false Belarusian TTS 📢 🤖 Belarusian TTS (text-to-speec

Yurii Paniv 1 Nov 27, 2021